Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Genet Metab ; 140(3): 107648, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598508

RESUMO

Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.


Assuntos
Barreira Hematoencefálica , Doenças por Armazenamento dos Lisossomos , Humanos , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Sistema Nervoso Central , Terapia Genética/métodos
2.
Adv Exp Med Biol ; 1429: 127-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486520

RESUMO

Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.


Assuntos
Edição de Genes , Doenças por Armazenamento dos Lisossomos , Humanos , Terapia Genética , Genoma , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Sistemas CRISPR-Cas/genética
3.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867370

RESUMO

GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the ß-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.


Assuntos
Proteína Ativadora de G(M2)/genética , Gangliosidoses GM2/patologia , beta-N-Acetil-Hexosaminidases/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Barreira Hematoencefálica , Ensaios Clínicos como Assunto , Dieta Cetogênica , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Terapia Genética , Humanos , Mutação , Pirimetamina/uso terapêutico , Transplante de Células-Tronco
4.
Acad Med ; 98(4): 514-520, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512808

RESUMO

PURPOSE: Professional identity formation (PIF) is a dynamic process by which an individual internalizes the core values and beliefs of a specific profession. Within medical education, PIF begins in medical school and continues throughout training and practice. Transitions affect PIF, with a critical transition occurring between medical training and unsupervised practice. This study aims to characterize PIF during the transition from resident to early-career faculty physician and explores the relationship between PIF and burnout during this transition. METHOD: The authors conducted a qualitative study using constructivist grounded theory. They conducted semistructured interviews with early-career faculty physicians (defined as practicing for ≤ 5 years) from the Department of Medicine, Mayo Clinic. Deidentified interview transcripts were processed through open and axial coding. The authors organized themes and identified relationships between themes that were refined through discussion and constant comparison with newly collected data. During data analysis, the authors identified self-determination theory, with the concepts of autonomy, competence, and relatedness, as a framework to support the organization and analysis of the data. RESULTS: Eleven early-career faculty physicians participated in the interviews. Their PIF was characterized by the dual desires to fit in and stand out. Striving for these desires was characterized by imposter syndrome, driving physicians to question their decision making and overall competence. Participants associated imposter syndrome and academic pressures with burnout. Autonomy support by the institution to pursue opportunities important for career development helped mitigate burnout and support PIF. CONCLUSIONS: Early-career faculty physicians face identity challenges when transitioning from training to unsupervised practice, including striving to fit in and stand out. They link this tension to imposter syndrome, which they associated with burnout. Institutional awareness and support, including addressing structural and cultural contributors to imposter syndrome, are paramount as new faculty explore their identities and navigate new challenges.


Assuntos
Esgotamento Profissional , Médicos , Humanos , Identificação Social , Docentes
5.
Adv Biol Regul ; 85: 100900, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870382

RESUMO

Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.


Assuntos
Esfingolipidoses , Esfingolipídeos , Sistema Nervoso Central/metabolismo , Humanos , Metabolismo dos Lipídeos , Esfingolipidoses/metabolismo , Esfingolipídeos/metabolismo
6.
Heliyon ; 6(3): e03635, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258481

RESUMO

Lysosomal storage diseases (LSDs) are a group of about 50 inborn errors of metabolism characterized by the lysosomal accumulation of partially or non-degraded molecules due to mutations in proteins involved in the degradation of macromolecules, transport, lysosomal biogenesis or modulators of lysosomal environment. Significant advances have been achieved in the diagnosis, management, and treatment of LSDs patients. In terms of approved therapies, these include enzyme replacement therapy (ERT), substrate reduction therapy, hematopoietic stem cell transplantation, and pharmacological chaperone therapy. In this review, we summarize the Colombian experience in LSDs thorough the evidence published. We identified 113 articles published between 1995 and 2019 that included Colombian researchers or physicians, and which were mainly focused in Mucopolysaccharidoses, Pompe disease, Gaucher disease, Fabry disease, and Tay-Sachs and Sandhoff diseases. Most of these articles focused on basic research, clinical cases, and mutation reports. Noteworthy, implementation of the enzyme assay in dried blood samples, led to a 5-fold increase in the identification of LSD patients, suggesting that these disorders still remain undiagnosed in the country. We consider that the information presented in this review will contribute to the knowledge of a broad spectrum of LSDs in Colombia and will also contribute to the development of public policies and the identification of research opportunities.

7.
Drugs ; 79(10): 1103-1134, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209777

RESUMO

Mucopolysaccharidoses (MPS) are inborn errors of metabolism produced by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans (GAGs). Although taken separately, each type is rare. As a group, MPS are relatively frequent, with an overall estimated incidence of around 1 in 20,000-25,000 births. Development of therapeutic options for MPS, including hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT), has modified the natural history of many MPS types. In spite of the improvement in some tissues and organs, significant challenges remain unsolved, including blood-brain barrier (BBB) penetration and treatment of lesions in avascular cartilage, heart valves, and corneas. Newer approaches, such as intrathecal ERT, ERT with fusion proteins to cross the BBB, gene therapy, substrate reduction therapy (SRT), chaperone therapy, and some combination of these strategies may provide better outcomes for MPS patients in the near future. As early diagnosis and early treatment are imperative to improve therapeutic efficacy, the inclusion of MPS in newborn screening programs should enhance the potential impact of treatment in reducing the morbidity associated with MPS diseases. In this review, we evaluate available treatments, including ERT and HSCT, and future treatments, such as gene therapy, SRT, and chaperone therapy, and describe the advantages and disadvantages. We also assess the current clinical endpoints and biomarkers used in clinical trials.


Assuntos
Mucopolissacaridoses/tratamento farmacológico , Adolescente , Barreira Hematoencefálica/metabolismo , Criança , Pré-Escolar , Terapia Combinada/métodos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Recém-Nascido , Proteínas de Fusão de Membrana/química , Proteínas de Fusão de Membrana/metabolismo , Permeabilidade , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA