Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochimie ; 180: 90-103, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33122105

RESUMO

Gentisate 1,2-dioxygenases belong to the class III ring-cleaving dioxygenases catalyzing key reactions of aromatic compounds degradation by aerobic microorganisms. In the present work, the results of complete molecular, structural, and functional investigations of the gentisate 1,2-dioxygenase (rho-GDO) from a gram-positive bacterium Rhodococcus opacus 1CP growing on 3-hydroxybenzoate as a sole source of carbon and energy are presented. The purified enzyme showed a narrow substrate specificity. Among fourteen investigated substrate analogues only gentisate was oxidized by the enzyme, what can be potentially applied in biosensor technologies. The rho-GDO encoding gene was identified in the genomic DNA of the R. opacus 1CP. According to phylogenetic analysis, the rho-GDO belongs to the group of apparently most recently acquired activities in bacterial genera Rhodococcus, Arthrobacter, Corynebacterium, Nocardia, Amycolatopsis, Comamonas, and Streptomyces. Homology modeling the rho-GDO 3D-structure demonstrates the composition identity of the first-sphere residues of the active site of rho-GDO and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (RCSB PDB: 2PHD), despite of their different substrate specificities. The phenomenon described for the first time for this family of enzymes supposes a more complicated mechanism of substrate specificity than previously imagined, and makes the rho-GDO a convenient model for a novel direction of structure-function relationship studies.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Rhodococcus/enzimologia , Rhodococcus/genética , Domínio Catalítico , Clonagem Molecular , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Rhodococcus/crescimento & desenvolvimento , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Genes (Basel) ; 11(1)2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877734

RESUMO

Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat-SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.


Assuntos
Flavonoides/biossíntese , Fragaria/genética , Repetições de Microssatélites , Rubus/genética , Vias Biossintéticas , Fragaria/classificação , Fragaria/metabolismo , Filogenia , Proteínas de Plantas/genética , Rubus/classificação , Rubus/metabolismo , Especificidade da Espécie
3.
Am J Pathol ; 163(2): 445-52, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12875966

RESUMO

Mice with homozygous deletion of the plasminogen activator inhibitor-1 gene (PAI-1(-/-)) are relatively protected from bleomycin-induced pulmonary fibrosis. At least part of the protective effect appears to occur during the latter stages of the pathological process when fibrotic tissue is being deposited. To investigate the effect of PAI-1 deficiency on fibrosis, we studied the accumulation of fibrotic tissue within subcutaneously implanted polyvinyl alcohol sponges. Similar to the effect of PAI-1 deficiency on bleomycin-induced pulmonary fibrosis, the accumulation of fibrotic tissue within implanted sponges occurred more slowly in PAI-1(-/-) compared to wild-type mice. Another striking difference observed in the PAI-1(-/-) mice was the rapid removal of a fibrin-rich matrix that formed within the sponges by 1 day after implantation in both wild-type and PAI-1(-/-) mice. The pattern of connective tissue invasion also differed: cells in wild-type mice infiltrated as individually penetrating cells whereas in PAI-1(-/-) mice they did so as a well-demarcated advancing front. Providing an alternative provisional matrix by impregnating sponges with a low concentration of collagen before implantation corrected the changes induced by PAI-1 deficiency. In conclusion, PAI-1 deficiency appears to affect fibrotic tissue formation in part by altering the provisional matrix that forms soon after tissue injury.


Assuntos
Fibrose/patologia , Pulmão/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Animais , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrina/metabolismo , Fibrose/metabolismo , Corpos Estranhos , Hidroxiprolina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Álcool de Polivinil , Próteses e Implantes
4.
Am J Respir Cell Mol Biol ; 31(6): 672-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15308506

RESUMO

The pathogenesis of pulmonary fibrosis is thought to involve alveolar epithelial injury that, when successfully repaired, can limit subsequent scarring. The plasminogen system participates in this process with the balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) being a critical determinant of the extent of collagen accumulation that follows lung injury. Because the plasminogen system is known to influence the rate of migration of epithelial cells, including keratinocytes and bronchial epithelial cells, we hypothesized that the balance of uPA and PAI-1 would affect the efficiency of alveolar epithelial cell (AEC) wound repair. Using an in vitro model of AEC wounding, we show that the efficiency of repair is adversely affected by a deficiency in uPA or by the exogenous administration of PAI-1. By using PAI-1 variants and AEC from mice transgenically deficient in vitronectin (Vn), we demonstrate that the PAI-1 effect requires its Vn-binding activity. Furthermore, we have found that cell motility is enhanced by the availability of Vn in the matrix and that the AEC-Vn interaction is mediated, in part, by the alpha(v)beta(1) integrin. The significant effect of uPA and PAI-1 on epithelial repair suggests a mechanism by which the plasminogen system may modulate pulmonary fibrosis.


Assuntos
Bleomicina/análogos & derivados , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Vitronectina/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Bleomicina/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Vitronectina/deficiência , Vitronectina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA