RESUMO
PURPOSE: Research is underway worldwide to investigate the feasibility, acceptability, and utility of sequencing-based newborn screening. Different methods have been used to select gene-condition pairs for screening, leading to highly inconsistent gene lists across studies. METHODS: Early Check developed and utilized actionability-based frameworks for evaluating gene-condition pairs for inclusion in newborn panels (Panel 1 - high actionability, Panel 2 - possible actionability). A previously developed framework, the Age-based Semi Quantitative Metric (ASQM), was adapted. Increasing ASQM scores, with a maximum of 15, suggest greater actionability. Wilcoxon tests were performed to compare Panel 1 gene-condition pairs on the Recommended Uniform Screening Panel (RUSP) to non-RUSP pairs. RESULTS: In our first round of assessment, Early Check identified 178 gene-condition pairs for inclusion in Panel 1 and 29 for Panel 2. Median ASQM scores of RUSP conditions on Panel 1 was 12 (range 4 to 15) and non-RUSP was 13 (range 9 to 15). Median scores for Panel 2 was 10 (range 6 to 14). CONCLUSION: The Early Check frameworks provide a transparent, semiquantitative, and reproducible methodology for selecting gene-condition pairs for NBS sequencing pilot studies that may inform future integration of genomic sequencing into population-level NBS. Collaborative efforts among newborn sequencing studies to establish shared criteria is needed to enhance cross-study comparisons.
RESUMO
Importance: The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood. Objective: To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program. Design, Setting, and Participants: The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100â¯000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis. Exposure: Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional. Main Outcomes and Measures: The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing. Results: Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS. Conclusions and Relevance: These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT05990179.
RESUMO
Fucosyltransferase 8 (FUT8) encodes a Golgi-localized α1,6 fucosyltransferase that is essential for transferring the monosaccharide fucose into N-linked glycoproteins, a process known as "core fucosylation." Here we describe three unrelated individuals, who presented with intrauterine growth retardation, severe developmental and growth delays with shortened limbs, neurological impairments, and respiratory complications. Each underwent whole-exome sequencing and was found to carry pathogenic variants in FUT8. The first individual (consanguineous family) was homozygous for c.715C>T (p.Arg239∗), while the second (non-consanguineous family) was compound heterozygous for c.1009C>G (p.Arg337Gly) and a splice site variant c.1259+5G>T. The third individual (consanguineous family) was homozygous for a c.943C>T (p.Arg315∗). Splicing analysis confirmed the c.1259+5G>T resulted in expression of an abnormal FUT8 transcript lacking exon 9. Functional studies using primary fibroblasts from two affected individuals revealed a complete lack of FUT8 protein expression that ultimately resulted in substantial deficiencies in total core fucosylated N-glycans. Furthermore, serum samples from all three individuals showed a complete loss of core fucosylation. Here, we show that loss of function mutations in FUT8 cause a congenital disorder of glycosylation (FUT8-CDG) characterized by defective core fucosylation that phenotypically parallels some aspects of the Fut8-/- knockout mouse. Importantly, identification of additional affected individuals can be easily achieved through analysis of core fucosylation of N-glycans.
Assuntos
Alelos , Fucose/genética , Fucosiltransferases/genética , Mutação/genética , Processamento Alternativo/genética , Células Cultivadas , Criança , Pré-Escolar , Evolução Fatal , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Humanos , Lectinas/metabolismo , Masculino , Polissacarídeos/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
PURPOSE: Reports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant-like mode. The authenticity and frequency of these findings are debated. METHODS: We retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study. RESULTS: We identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype. CONCLUSION: These findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.
Assuntos
DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , Haplótipos , Humanos , Masculino , Mitocôndrias/genética , Fenótipo , Estudos RetrospectivosRESUMO
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas Mitocondriais/genética , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ras/genética , Fácies , Genótipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Conformação Proteica , Proteínas ral de Ligação ao GTP/química , Proteínas ras/químicaRESUMO
Dent disease is an X-linked proximal tubulopathy that typically presents with hypercalciuria, low-molecular-weight proteinuria and slow progression to endstage renal disease. We report the case of a 5-year-old boy who presented with asymptomatic nephrotic range proteinuria and was later diagnosed with Dent disease. Absence of specific glomerular pathology in the first kidney biopsy led to erroneous treatment for presumably unsampled primary focal segmental glomerulosclerosis. Aggressive angiotensin blockade and immunosuppression resulted in significant side effects with marginal benefit. The continued nonspecific findings after a second kidney biopsy 2 years later led to the suspicion of a congenital tubulopathy. We detected a novel CLCN5 gene mutation, c.1396G > C, that creates a G466R missense change in the ClC-5 protein. Dent disease should be considered in the differential diagnosis of asymptomatic proteinuria for male patients. Profiling proteinuria in these patients by spot urine albumin/creatinine ratio may give the first clue to a tubulopathy. Determining the extent to which the clinical work-up should proceed for females with Dent phenotype or asymptomatic proteinuria remains to be a challenging clinical dilemma.
Assuntos
Canais de Cloreto/genética , Glomerulosclerose Segmentar e Focal/genética , Mutação , Proteinúria/genética , Pré-Escolar , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Rim/patologia , Masculino , Proteinúria/patologiaRESUMO
Phosphoinositides (phosphorylated derivatives of phosphatidylinositol, PI) are versatile intracellular signaling lipids whose occurrence in low concentrations complicates direct mass measurements. Here we present a sensitive method to detect, identify and quantify phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP(2)) with different fatty acid compositions (phosphoinositide profiles) in total lipid extracts by electrospray ionization mass spectrometry (ESI-MS). Using this method, we detected elevated concentrations of PIP2 in human fibroblasts from patients with Lowe syndrome, a genetic disorder that affects phosphoinositide metabolism. Saccharomyces cerevisiae cells deficient in enzymes involved in PIP metabolism--Sac1p, a phosphoinositide phosphatase, and Vps34p and Pik1p, a PI 3-kinase and PI 4-kinase, respectively--showed not only different PIP concentrations but also differential changes in PIP profiles indicating metabolic and/or subcellular pooling. Mass spectrometric analysis of phosphoinositides offers unique advantages over existing approaches and may represent a powerful diagnostic tool for human diseases that involve defective phosphoinositide metabolism.
Assuntos
Extratos Celulares/química , Lipídeos/análise , Lipídeos/química , Neurônios/química , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Saccharomyces cerevisiae/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Química Encefálica , Células Cultivadas , Estudos de Viabilidade , Camundongos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
[This corrects the article DOI: 10.1016/j.ymgmr.2015.01.005.].
RESUMO
This report reviews the genetics of familial exudative vitreoretinopathy (FEVR) and describes the identification of a novel variant in the LRP5 gene. A 20-month-old boy presented with reduced visual acuity in the right eye from exudative retinal detachment with mild retinal traction. Fluorescein angiography in the right eye disclosed extensive peripheral retinal non-perfusion and telangiectatic vessels and the left eye showed minimal peripheral non-perfusion. These features were suggestive of FEVR. Treatment with laser photocoagulation and cryotherapy to the region of non-perfusion was performed with resolution of the exudative retinal detachment. Fundus examination of the father revealed mild signs of FEVR, such as hyperacute retinal vascular branching and slight retinal vascular traction, whereas the mother's fundus examination was unremarkable. Genetic testing revealed that the affected boy was negative for mutations in the FZD4, NDP, and TSPAN12 genes and heterozygous for a previously unreported A745V variant in the LRP5 gene. The father was also heterozygous for the A745V variant in the LRP5 gene and the unaffected mother showed no mutation. A genetic evaluation of the known genes associated with FEVR revealed a novel variant in the LRP5 gene that co-segregated with the phenotype in the family. [J Pediatr Ophthalmol Strabismus. 2016;53:e39-e42.].
Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Doenças Retinianas/genética , Oftalmopatias Hereditárias , Vitreorretinopatias Exsudativas Familiares , Angiofluoresceinografia , Humanos , Lactente , Fotocoagulação a Laser , Masculino , Reação em Cadeia da Polimerase , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/cirurgia , Doenças Retinianas/diagnósticoRESUMO
We report three symptomatic children with profound biotinidase deficiency from Sri Lanka. All three children presented with typical clinical features of the disorder. The first is homozygous for a missense mutation in the BTD gene (c.98_104 del7insTCC; p.Cys33PhefsX36) that is commonly seen in the western countries, the second is homozygous for a novel missense mutation (p.Ala439Asp), and the third is the first reported instance of a contiguous gene deletion causing the enzyme deficiency. In addition, this latter finding exemplifies the importance of considering a deletion within the BTD gene for reconciling enzymatic activity with genotype, which can occur in asymptomatic children who are identified by newborn screening.
RESUMO
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disorder resulting from a disruption of the thin filament proteins of the striated muscle sarcomere. The disorder is typically characterized by muscle weakness including the face, neck, respiratory, and limb muscles and is clinically classified based on the age of onset and severity. Mutations in the ACTA1 gene contribute to a significant proportion of NM cases. The majority of ACTA1 gene mutations are missense mutations causing autosomal dominant NM by producing an abnormal protein. However, approximately 10% of ACTA1 gene mutations are associated with autosomal recessive NM; these mutations are associated with loss of protein function. We report the first case of a large deletion in the ACTA1 gene contributing to autosomal recessive NM. This case illustrates the importance of understanding disease mechanisms at the molecular level to accurately infer the inheritance pattern and potentially aid with clinical management.
Assuntos
Actinas/genética , Miopatias da Nemalina/genética , Deleção de Sequência , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Músculo Esquelético/patologia , Miopatias da Nemalina/patologiaRESUMO
Dent disease is an X-linked renal proximal tubulopathy associated with mutations in the chloride channel gene CLCN5. Lowe syndrome, a multisystem disease characterized by renal tubulopathy, congenital cataracts, and mental retardation, is associated with mutations in the gene OCRL1, which encodes a phosphatidylinositol 4,5-bisphosphate (PIP(2)) 5-phosphatase. Genetic heterogeneity has been suspected in Dent disease, but no other gene for Dent disease has been reported. We studied male probands in 13 families, all of whom met strict criteria for Dent disease but lacked mutations in CLCN5. Linkage analysis in the one large family localized the gene to a candidate region at Xq25-Xq27.1. Sequencing of candidate genes revealed a mutation in the OCRL1 gene. Of the 13 families studied, OCRL1 mutations were found in 5. PIP(2) 5-phosphatase activity was markedly reduced in skin fibroblasts cultured from the probands of these five families, and protein expression, measured by western blotting, was reduced or absent. Slit-lamp examinations performed in childhood or adulthood for all five probands showed normal results. Unlike patients with typical Lowe syndrome, none of these patients had metabolic acidosis. Three of the five probands had mild mental retardation, whereas two had no developmental delay or behavioral disturbance. These findings demonstrate that mutations in OCRL1 can occur with the isolated renal phenotype of Dent disease in patients lacking the cataracts, renal tubular acidosis, and neurological abnormalities that are characteristic of Lowe syndrome. This observation confirms genetic heterogeneity in Dent disease and demonstrates more-extensive phenotypic heterogeneity in Lowe syndrome than was previously appreciated. It establishes that the diagnostic criteria for disorders resulting from mutations in the Lowe syndrome gene OCRL1 need to be revised.
Assuntos
Variação Genética , Túbulos Renais Proximais/fisiologia , Monoéster Fosfórico Hidrolases/genética , Erros Inatos do Transporte Tubular Renal/genética , Adulto , Criança , Deficiências do Desenvolvimento/genética , Fibroblastos , Humanos , Deficiência Intelectual/genética , Masculino , Síndrome Oculocerebrorrenal , LinhagemRESUMO
Lowe syndrome is a rare X-linked disorder characterized by bilateral congenital cataracts, renal Fanconi syndrome, and mental retardation. Lowe syndrome results from mutations in the OCRL1 gene, which encodes a phosphatidylinositol 4,5 bisphosphate 5-phosphatase located in the trans-Golgi network. As a first step in identifying the link between ocrl1 deficiency and the clinical disorder, we have identified a reproducible cellular abnormality of the actin cytoskeleton in fibroblasts from patients with Lowe syndrome. The cellular abnormality is characterized by a decrease in long actin stress fibers, enhanced sensitivity to actin depolymerizing agents, and an increase in punctate F-actin staining in a distinctly anomalous distribution in the center of the cell. We also demonstrate an abnormal distribution of two actin-binding proteins, gelsolin and alpha-actinin, proteins regulated by both PIP(2) and Ca(+2) that would be expected to be altered in Lowe cells. Actin polymerization plays a key role in the formation, maintenance, and proper function of tight junctions and adherens junctions, which have been demonstrated to be critical in renal proximal tubule function, and in the differentiation of the lens. These findings point to a general mechanism to explain how this PIP(2) 5-phosphatase deficiency might produce the Lowe syndrome phenotype.
Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Proteínas do Tecido Nervoso/deficiência , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/deficiência , Proteínas/genética , Actinina/análise , Biopolímeros/química , Biopolímeros/metabolismo , Citoesqueleto/enzimologia , Fibroblastos , Imunofluorescência , Gelsolina/análise , Genótipo , Humanos , Proteínas do Tecido Nervoso/genética , Síndrome Oculocerebrorrenal/enzimologia , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Fibras de Estresse/química , Fibras de Estresse/metabolismo , Fibras de Estresse/patologiaRESUMO
The dynamic nature of cellular interactions during differentiation of germ cells and their translocation from the basement membrane to the lumen of the seminiferous tubules requires the existence of complex and well-regulated cellular adhesion mechanisms in the testis. Successful migration of the developing germ cells is characterized by dynamic breakage and reformation of cadherin-containing adherens junctions between the germ cells and Sertoli cells, the polarized somatic cells of the testis that support and nourish the developing gametes. Here, we demonstrate the accumulation of abnormally swollen, actin-coated, endosome-like structures that contain intact adherens junctions and stain positive for N-cadherin and beta-catenin in the Sertoli cell cytosol of mice deficient in Inpp5b, an inositol polyphosphate 5-phosphatase. Simultaneous to the formation of these abnormal structures, developing germ cells are prematurely released from the seminiferous epithelium and sloughed into the epididymis. Our results demonstrate a role for Inpp5b in the regulation of cell adhesion in the testis and in the formation of junctional complexes with neighboring cells, and they emphasize the important and essential role of phosphoinositides in spermatogenesis.