Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548428

RESUMO

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Assuntos
Evolução Biológica , Eucariotos/virologia , Vírus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Água do Mar/virologia , Proteínas Virais/metabolismo , Ecossistema , Genoma Viral , Vírus Gigantes/classificação , Metagenômica , Oceanos e Mares , Phycodnaviridae/classificação , Filogenia , Prótons , Rodopsina/química , Rodopsina/genética , Proteínas Virais/química , Proteínas Virais/genética
2.
BMC Biol ; 18(1): 4, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918709

RESUMO

Upon publication of the original article [1], it was noticed that Alexandra Z. Worden's affiliation is not complete. The full affiliation information for Alexandra Z. Worden is can be found below and in the complete affiliation list of this Correction article.

3.
BMC Biol ; 16(1): 136, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396330

RESUMO

BACKGROUND: Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. RESULTS: We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. CONCLUSIONS: Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization.


Assuntos
Dimerização , Evolução Molecular , Genes Homeobox , Plantas/genética , Fatores de Transcrição/genética , Animais , Biologia Computacional , Filogenia , Fatores de Transcrição/química
4.
Environ Microbiol ; 20(8): 2898-2912, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29749714

RESUMO

Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.


Assuntos
Clorófitas/virologia , Regulação da Expressão Gênica de Plantas , Fosfatos/química , Phycodnaviridae/fisiologia , Transcrição Gênica/fisiologia , Organismos Aquáticos , Clorófitas/metabolismo , Fosfatos/metabolismo , Phycodnaviridae/genética
5.
Proc Natl Acad Sci U S A ; 112(26): 8008-12, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080407

RESUMO

Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean.


Assuntos
Luz , Prochlorococcus/crescimento & desenvolvimento , Microbiologia da Água , Ecossistema , Cadeia Alimentar , Oceano Pacífico , Temperatura
6.
Environ Microbiol ; 19(8): 3219-3234, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28585420

RESUMO

Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml-1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml-1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml-1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml-1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml-1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters.


Assuntos
Clorófitas/classificação , Geografia , Fitoplâncton/classificação , Estações do Ano , Clorofila/análise , Ecótipo , Meio Ambiente , Oceanos e Mares , Filogenia , Água do Mar
7.
Proc Natl Acad Sci U S A ; 111(44): 15827-32, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25267653

RESUMO

Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.


Assuntos
Arabidopsis , Clorófitas , Evolução Molecular , Regulação da Expressão Gênica de Plantas/fisiologia , Fitocromo , Transdução de Sinais/fisiologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Dados de Sequência Molecular , Filogenia , Fitocromo/biossíntese , Fitocromo/genética , Estrutura Terciária de Proteína , Transcriptoma/fisiologia
8.
BMC Genomics ; 17(1): 930, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852226

RESUMO

BACKGROUND: Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. RESULTS: Here we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. CONCLUSIONS: These findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.


Assuntos
Bacteriófagos/genética , Transferência Genética Horizontal/genética , Genoma Viral , Bacteriófagos/classificação , Evolução Biológica , Hibridização Genômica Comparativa , DNA/metabolismo , DNA Viral/química , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Ligação Genética , Especificidade de Hospedeiro , Metagenômica , Filogenia , Análise de Sequência de DNA
9.
BMC Genomics ; 17: 267, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029936

RESUMO

BACKGROUND: Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. RESULTS: We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. CONCLUSIONS: Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.


Assuntos
Evolução Biológica , Clorófitas/genética , Genoma de Planta , Embriófitas/genética , Genômica/métodos , Íntrons , Modelos Genéticos , Família Multigênica , Filogenia , Proteoma/genética , RNA de Algas/genética , Análise de Sequência de RNA , Transcriptoma
10.
Mol Biol Evol ; 32(9): 2219-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25998521

RESUMO

Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica--a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.


Assuntos
Clorófitas/genética , Regiões Antárticas , Regiões Árticas , Sequência de Bases , Genes de Plantas , Especiação Genética , Íntrons , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Filogeografia , Fitoplâncton/genética , RNA de Plantas/genética , RNA Ribossômico 18S , Análise de Sequência de RNA
11.
Appl Environ Microbiol ; 82(6): 1693-1705, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729718

RESUMO

Eukaryotic algae within the picoplankton size class (≤2 µm in diameter) are important marine primary producers, but their spatial and ecological distributions are not well characterized. Here, we studied three picoeukaryotic prasinophyte genera and their cyanobacterial counterparts, Prochlorococcus and Synechococcus, during two cruises along a North Pacific transect characterized by different ecological regimes. Picoeukaryotes and Synechococcus reached maximum abundances of 1.44 × 10(5) and 3.37 × 10(5) cells · ml(-1), respectively, in mesotrophic waters, while Prochlorococcus reached 1.95 × 10(5) cells · ml(-1) in the oligotrophic ocean. Of the picoeukaryotes, Bathycoccus was present at all stations in both cruises, reaching 21,368 ± 327 18S rRNA gene copies · ml(-1). Micromonas and Ostreococcus clade OI were detected only in mesotrophic and coastal waters and Ostreococcus clade OII only in the oligotrophic ocean. To resolve proposed Bathycoccus ecotypes, we established genetic distances for 1,104 marker genes using targeted metagenomes and the Bathycoccus prasinos genome. The analysis was anchored in comparative genome analysis of three Ostreococcus species for which physiological and environmental data are available to facilitate data interpretation. We established that two Bathycoccus ecotypes exist, named here BI (represented by coastal isolate Bathycoccus prasinos) and BII. These share 82% ± 6% nucleotide identity across homologs, while the Ostreococcus spp. share 75% ± 8%. We developed and applied an analysis of ecomarkers to metatranscriptomes sequenced here and published -omics data from the same region. The results indicated that the Bathycoccus ecotypes cooccur more often than Ostreococcus clades OI and OII do. Exploratory analyses of relative transcript abundances suggest that Bathycoccus NRT2.1 and AMT2.2 are high-affinity NO3 (-) and low-affinity NH4 (+) transporters, respectively, with close homologs in multiple picoprasinophytes. Additionally, in the open ocean, where dissolved iron concentrations were low (0.08 nM), there appeared to be a shift to the use of nickel superoxide dismutases (SODs) from Mn/Fe/Cu SODs closer inshore. Our study documents the distribution of picophytoplankton along a North Pacific ecological gradient and offers new concepts and techniques for investigating their biogeography.


Assuntos
Clorófitas/classificação , Ecótipo , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia , Clorófitas/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenômica , Oceano Pacífico , Filogeografia , Fitoplâncton/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
12.
Environ Microbiol ; 17(10): 3692-707, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25522910

RESUMO

The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.


Assuntos
Prochlorococcus/genética , Água do Mar/microbiologia , Synechococcus/genética , Biodiversidade , Oceano Pacífico , Filogenia , Prochlorococcus/classificação , Prochlorococcus/isolamento & purificação , RNA Ribossômico 16S/genética , Synechococcus/classificação , Synechococcus/isolamento & purificação
13.
Proc Natl Acad Sci U S A ; 108(4): 1496-500, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205890

RESUMO

The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic, North Pacific, and European freshwater sites, suggesting a broad ecophysiology and wide habitat distribution. Quantitative PCR analyses demonstrate that the rappemonads are often rare but can form transient blooms in the Sargasso Sea, where high 16S rRNA gene copies mL(-1) were detected in late winter. This pattern is consistent with these microbes being a member of the rare biosphere, whose constituents have been proposed to play important roles under ecosystem change. Fluorescence in situ hybridization revealed that cells from this unique lineage were 6.6 ± 1.2 × 5.7 ± 1.0 µm, larger than numerically dominant open-ocean phytoplankton, and appear to contain two to four plastids. The rappemonads are unique, widespread, putatively photosynthetic algae that are absent from present-day ecosystem models and current versions of the tree of life.


Assuntos
Eucariotos/genética , Variação Genética , Filogenia , Plastídeos/genética , Oceano Atlântico , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/classificação , Eucariotos/citologia , Evolução Molecular , Água Doce , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Dados de Sequência Molecular , Oceano Pacífico , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 23S/genética , Estações do Ano , Água do Mar , Análise de Sequência de DNA , Microbiologia da Água
14.
Sci Adv ; 9(34): eadg3247, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611094

RESUMO

Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.


Assuntos
Octopodiformes , Animais , Feminino , Suplementos Nutricionais , Planeta Terra , Ecologia , Incubadoras , Água
15.
Structure ; 17(2): 303-13, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217401

RESUMO

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Anabaena variabilis/química , Anabaena variabilis/enzimologia , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Endopeptidases/fisiologia , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Nostoc/química , Nostoc/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Domínios de Homologia de src
16.
Front Microbiol ; 11: 542372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101224

RESUMO

Much is known about how broad eukaryotic phytoplankton groups vary according to nutrient availability in marine ecosystems. However, genus- and species-level dynamics are generally unknown, although important given that adaptation and acclimation processes differentiate at these levels. We examined phytoplankton communities across seasonal cycles in the North Atlantic (BATS) and under different trophic conditions in the eastern North Pacific (ENP), using phylogenetic classification of plastid-encoded 16S rRNA amplicon sequence variants (ASVs) and other methodologies, including flow cytometric cell sorting. Prasinophytes dominated eukaryotic phytoplankton amplicons during the nutrient-rich deep-mixing winter period at BATS. During stratification ('summer') uncultured dictyochophytes formed ∼35 ± 10% of all surface plastid amplicons and dominated those from stramenopile algae, whereas diatoms showed only minor, ephemeral contributions over the entire year. Uncultured dictyochophytes also comprised a major fraction of plastid amplicons in the oligotrophic ENP. Phylogenetic reconstructions of near-full length 16S rRNA sequences established 11 uncultured Dictyochophyte Environmental Clades (DEC). DEC-I and DEC-VI dominated surface dictyochophytes under stratification at BATS and in the ENP, and DEC-IV was also important in the latter. Additionally, although less common at BATS, Florenciella-related clades (FC) were prominent at depth in the ENP. In both ecosystems, pelagophytes contributed notably at depth, with PEC-VIII (Pelagophyte Environmental Clade) and (cultured) Pelagomonas calceolata being most important. Q-PCR confirmed the near absence of P. calceolata at the surface of the same oligotrophic sites where it reached ∼1,500 18S rRNA gene copies ml-1 at the DCM. To further characterize phytoplankton present in our samples, we performed staining and at-sea single-cell sorting experiments. Sequencing results from these indicated several uncultured dictyochophyte clades are comprised of predatory mixotrophs. From an evolutionary perspective, these cells showed both conserved and unique features in the chloroplast genome. In ENP metatranscriptomes we observed high expression of multiple chloroplast genes as well as expression of a selfish element (group II intron) in the psaA gene. Comparative analyses across the Pacific and Atlantic sites support the conclusion that predatory dictyochophytes thrive under low nutrient conditions. The observations that several uncultured dictyochophyte lineages are seemingly capable of photosynthesis and predation, raises questions about potential shifts in phytoplankton trophic roles associated with seasonality and long-term ocean change.

17.
ISME J ; 14(4): 984-998, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919469

RESUMO

Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.


Assuntos
Sequestro de Carbono , Sedimentos Geológicos/microbiologia , Microbiota , Biodiversidade , Cilióforos/genética , Filogenia , Água do Mar/microbiologia , Estramenópilas
18.
Proteins ; 75(2): 296-307, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19173316

RESUMO

ECX21941 represents a very large family (over 600 members) of novel, ocean metagenome-specific proteins identified by clustering of the dataset from the Global Ocean Sampling expedition. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The ECX21941 protein assembles as a homopentamer in solution and in the crystal structure when expressed in Escherichia coli and represents the first pentameric structure for this Sm/LSm family of proteins, although the actual oligomeric form in vivo is currently not known. The genomic neighborhood analysis of ECX21941 and its homologs combined with sequence similarity searches suggest a cyanophage origin for this protein. The specific functions of members of this family are unknown, but our structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing.


Assuntos
Bacteriófagos/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Bacteriófagos/genética , Cristalografia por Raios X , Bases de Dados Genéticas , Escherichia coli/genética , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos
19.
mBio ; 8(5)2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018119

RESUMO

Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10-6 pmol thiamin cell-1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10-7 or (1.58 ± 0.14) × 10-7 pmol thiamin cell-1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure.IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes.


Assuntos
Haptófitas/metabolismo , Pirimidinas/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Tiamina/metabolismo , Meios de Cultura , Genoma , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Oceanos e Mares , Tiamina/biossíntese , Transcriptoma
20.
Chem Biol ; 11(11): 1543-52, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15556005

RESUMO

"Candidatus Endobugula sertula," the uncultivated bacterial symbiont of Bugula neritina, is the proposed source of the bryostatin family of anticancer compounds. We cloned a large modular polyketide synthase (PKS) gene complex from "Candidatus Endobugula sertula" and characterized one gene, bryA, which we propose is responsible for the initial steps of bryostatin biosynthesis. Typical PKS domains are present. However, acyltransferase domains are lacking in bryA, and beta-ketoacyl synthase domains of bryA cluster with those of PKSs with discrete, rather than integral, acyltransferases. We propose a model for biosynthesis of the bryostatin D-lactate starter unit by the bryA loading module, utilizing atypical domains homologous to FkbH, KR, and DH. The bryA gene product is proposed to synthesize a portion of the pharmacologically active part of bryostatin and may be useful in semisynthesis of clinically useful bryostatin analogs.


Assuntos
Bactérias/enzimologia , Briozoários/microbiologia , Macrolídeos/metabolismo , Policetídeo Sintases/genética , Simbiose , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Proteínas de Bactérias/genética , Briostatinas , Mapeamento Cromossômico , Clonagem Molecular , Macrolídeos/química , Dados de Sequência Molecular , Filogenia , Policetídeo Sintases/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA