Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286039

RESUMO

Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional corepressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1. In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2-PPARα complex. Consistent with these in vitro findings, we found that the CtBP2-PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.


Assuntos
Oxirredutases do Álcool , Proteínas Correpressoras , Obesidade , PPAR alfa , Humanos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Regulação Alostérica
2.
Biochem Biophys Res Commun ; 562: 146-153, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34052660

RESUMO

While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2). While the regulatory steps for the activation of NRFs have been investigated with particular emphasis on nuclear translocation and proteosomal degradation, unknown redundancy may exist considering the indispensable nature of these defense systems. Here we unraveled that C-terminal binding protein 2 (CtBP2), a transcriptional cofactor with redox-sensing capability, is an obligate partner of NRFs. CtBP2 forms transcriptional complexes with NRF1 and NRF2 that is required to promote the expression of antioxidant genes in response to oxidative insults. Our findings illustrate a basis for understanding the transcriptional regulation of antioxidative defense systems that may be exploited therapeutically.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 1 Relacionado a NF-E2/química , Fator 1 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ligação Proteica , Transcrição Gênica
3.
Biochem Biophys Res Commun ; 523(2): 354-360, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866012

RESUMO

The epithelial to mesenchymal transition (EMT) is a cell intrinsic program controlling cellular morphological and phenotypic remodeling in a wide range of biological processes. Despite the accumulating evidence, the transcriptional networks regulating EMT still remain to be elucidated. In this study, we demonstrate that C-terminal binding protein 2 (CtBP2), a critical transcriptional co-repressor harboring pyridine nucleotide sensing capability, orchestrates the EMT program at least in part through a novel transcriptional interaction with an octamer transcription factor, OCT1 (POU2F1, POU class 2 homeobox 1). We identified novel interactions of CtBP2 with several octamer transcription factors, and CtBP2 exhibits a direct interaction with OCT1 in particular. OCT1 accelerates the EMT program as reported, which is diminished by the mutation of the CtBP-binding motif in OCT1, suggesting OCT1 represses epithelial gene expression through recruiting the co-repressor CtBP2. In accordance with these findings, a canonical EMT activator transforming growth factor-ß (TGF-ß) promotes the formation of the CtBP2/OCT1 complex. Our observations illustrate the role of CtBP2 to orchestrate the EMT program through the interaction with OCT1 and highlight the potential of therapeutic exploitation of this new transcriptional system for a wide range of diseases.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fator 1 de Transcrição de Octâmero/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Sequência Conservada , Transição Epitelial-Mesenquimal/genética , Feminino , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Camundongos , Mutação , Fator 1 de Transcrição de Octâmero/química , Fator 1 de Transcrição de Octâmero/genética , Domínios e Motivos de Interação entre Proteínas , Ratos , Fator de Crescimento Transformador beta/metabolismo
4.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375679

RESUMO

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Assuntos
Complicações do Diabetes/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Idoso , Complicações do Diabetes/complicações , Complicações do Diabetes/patologia , Glucose/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Insulina/biossíntese , Insulina/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Mutação/genética , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/patologia , Ácido Úrico/metabolismo , Cálculos Urinários/complicações , Cálculos Urinários/patologia , Sequenciamento do Exoma
5.
Biochem Biophys Res Commun ; 493(1): 40-45, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28928093

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have both anti-diabetic and anti-obesity effects. However, the precise mechanism of the anti-obesity effect remains unclear. We previously demonstrated that the glycogen depletion signal triggers lipolysis in adipose tissue via liver-brain-adipose neurocircuitry. In this study, therefore, we investigated whether the anti-obesity mechanism of SGLT2 inhibitor is mediated by this mechanism. Diet-induced obese mice were subjected to hepatic vagotomy (HVx) or sham operation and loaded with high fat diet containing 0.015% tofogliflozin (TOFO), a highly selective SGLT2 inhibitor, for 3 weeks. TOFO-treated mice showed a decrease in fat mass and the effect of TOFO was attenuated in HVx group. Although both HVx and sham mice showed a similar level of reduction in hepatic glycogen by TOFO treatment, HVx mice exhibited an attenuated response in protein phosphorylation by protein kinase A (PKA) in white adipose tissue compared with the sham group. As PKA pathway is known to act as an effector of the liver-brain-adipose axis and activate triglyceride lipases in adipocytes, these results indicated that SGLT2 inhibition triggered glycogen depletion signal and actuated liver-brain-adipose axis, resulting in PKA activation in adipocytes. Taken together, it was concluded that the effect of SGLT2 inhibition on weight loss is in part mediated via the liver-brain-adipose neurocircuitry.


Assuntos
Tecido Adiposo/fisiologia , Compostos Benzidrílicos/administração & dosagem , Encéfalo/fisiologia , Glucosídeos/administração & dosagem , Fígado/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio/metabolismo , Redução de Peso/fisiologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/inervação , Animais , Fármacos Antiobesidade/administração & dosagem , Encéfalo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vagotomia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Nervo Vago/cirurgia
6.
J Atheroscler Thromb ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538338

RESUMO

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

7.
Cell Rep ; 42(8): 112914, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37557182

RESUMO

The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of ß cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured ß cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic ß cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of ß cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Obesidade , Animais , Humanos , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo
8.
Cureus ; 14(10): e30067, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381756

RESUMO

A 19-year-old male presented with fatigue and dyspnea on exertion. He was diagnosed with acute T-cell lymphoblastic leukemia. After following the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) 2003 protocol that incorporates L-asparaginase (L-Asp) treatment, blood glucose levels became elevated for more than one year and insulin secretion was depleted. Anti-glutamic acid decarboxylase (GAD) and anti-islet antigen 2 (IA-2) antibody levels were both positive, which is rare. The patient's HLA genotype was sensitive for type 1 diabetes. L-Asp can cause transient hyperglycemia as a side effect. However, cases with the anti-GAD antibody have not been reported in L-Asp-induced diabetes. In summary, L-Asp-induced continuous hyperglycemia might be associated with a type 1 diabetes-related HLA genotype through elevations of anti-GAD and anti-IA-2 antibodies.

9.
Sci Rep ; 12(1): 11965, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831378

RESUMO

We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls. The response rate to the survey was 72%; of the 226 respondents, there were 129 males and 97 females (median age 62 years). The fall rate during the first year after discharge was 19%. Logistic regression revealed that knee extension strength, fasting C-peptide (F-CPR) level and dorsiflexion strength were independent predictors of falls. The random forest classifier placed grip strength, F-CPR, knee extension strength, dorsiflexion strength and proliferative diabetic retinopathy among the 5 most important variables for falls. Lower extremity muscle weakness, elevated F-CPR levels and reduced grip strength were shown to be important risk factors for falls in T2D. Analysis by random forest can identify new risk factors for falls in addition to logistic regression.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Modelos Logísticos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Fatores de Risco
10.
Artigo em Inglês | MEDLINE | ID: mdl-35979842

RESUMO

Summary: A paired homeodomain transcription factor, PAX6 (paired-box 6), is essential for the development and differentiation of pancreatic endocrine cells as well as ocular cells. Despite the impairment of insulin secretion observed in PAX6-deficient mice, evidence implicating causal association between PAX6 gene mutations and monogenic forms of human diabetes is limited. We herein describe a 33-year-old Japanese woman with congenital aniridia who was referred to our hospital because of her uncontrolled diabetes with elevated hemoglobin A1c (13.1%) and blood glucose (32.5 mmol/L) levels. Our biochemical analysis revealed that her insulin secretory capacity was modestly impaired as represented by decreased 24-h urinary C-peptide levels (38.0 µg/day), primarily explaining her diabetes. Intriguingly, there was a trend toward a reduction in her serum glucagon levels as well. Based on the well-recognized association of PAX6 gene mutations with congenital aniridia, we screened the whole PAX6 coding sequence, leading to an identification of a heterozygous Gln135* mutation. We tested our idea that this mutation may at least in part explain the impaired insulin secretion observed in this patient. In cultured pancreatic ß-cells, exogenous expression of the PAX6 Gln135* mutant produced a truncated protein that lacked the transcriptional activity to induce insulin gene expression. Our observation together with preceding reports support the recent attempt to include PAX6 in the growing list of genes causally responsible for monogenic diabetes. In addition, since most cases of congenital aniridia carry PAX6 mutations, we may need to pay more attention to blood glucose levels in these patients. Learning points: PAX6 Gln135* mutation may be causally associated not only with congenital aniridia but also with diabetes. Blood glucose levels may deserve more attention in cases of congenital aniridia with PAX6 mutations. Our case supports the recent attempt to include PAX6 in the list of MODY genes, and Gln135* may be pathogenic.

11.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235570

RESUMO

Although branched-chain amino acids (BCAA) are known to stimulate myofibrillar protein synthesis and affect insulin signaling and kynurenine metabolism (the latter being a metabolite of tryptophan associated with depression and dementia), the effects of BCAA supplementation on type 2 diabetes (T2D) are not clear. Therefore, a 24-week, prospective randomized open blinded-endpoint trial was conducted to evaluate the effects of supplementation of 8 g of BCAA or 7.5 g of soy protein on skeletal muscle and glycemic control as well as adverse events in elderly individuals with T2D. Thirty-six participants were randomly assigned to the BCAA group (n = 21) and the soy protein group (n = 15). Skeletal muscle mass and HbA1c, which were primary endpoints, did not change over time or differ between groups. However, knee extension muscle strength was significantly increased in the soy protein group and showed a tendency to increase in the BCAA group. Homeostasis model assessment for insulin resistance did not significantly change during the trial. Depressive symptoms were significantly improved in the BCAA group but the difference between groups was not significant. Results suggested that BCAA supplementation may not affect skeletal muscle mass and glycemic control and may improve depressive symptoms in elderly individuals with T2D.


Assuntos
Aminoácidos de Cadeia Ramificada , Diabetes Mellitus Tipo 2 , Idoso , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hemoglobinas Glicadas/metabolismo , Controle Glicêmico , Humanos , Insulina/metabolismo , Cinurenina/metabolismo , Músculo Esquelético/metabolismo , Estudos Prospectivos , Proteínas de Soja/metabolismo , Triptofano/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-36571472

RESUMO

Summary: In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points: While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.

13.
J Diabetes Res ; 2021: 9961612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660814

RESUMO

AIM: We investigated the relationship between cognitive function and olfactory and physical functions in middle-aged persons with and without type 2 diabetes (T2D) to examine the potential of olfactory and physical functions as biomarkers for early cognitive impairment. METHODS: Enrolled were 70 T2D patients (age 40 to <65 y) and 81 age-matched control participants without diabetes. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCA), Trail Making Test parts A and B (TMT-A/-B), Wisconsin Card Sorting Test (WCST), Quick Inventory of Depressive Symptomatology Self-Report (QIDS), and Starkstein Apathy Scale (SAS). Multiple linear regression analyses were performed. RESULTS: Odor identification was an independent determinant shown in the results of the TMT-A in the entire participant group and was independently associated with the MoCA and TMT-B in the T2D group. Balance capability assessed with a stabilometer was independently associated with all cognitive function tests except for QISD and SAS in the entire participant group and the T2D group and was independently associated with TMT-A in the control group. Knee extension strength was independently associated with the SAS in the entire participant group and the T2D group. CONCLUSIONS: Odor identification, balance capability, and knee extension strength were potential markers for cognitive decline in middle-aged persons with T2D.


Assuntos
Cognição , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Força Muscular , Percepção Olfatória , Equilíbrio Postural , Olfato , Adulto , Fatores Etários , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diagnóstico Precoce , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Exame Físico , Valor Preditivo dos Testes , Fatores de Risco
14.
FEBS Lett ; 593(4): 423-432, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30659595

RESUMO

Glucocorticoids have various medical uses but are accompanied by side effects. The glucocorticoid receptor (GR) has been reported to regulate the clock genes, but the underlying mechanisms are incompletely understood. In this study, we focused on the suppressive effect of the GR on the expression of Rev-erbα (Nr1d1), an important component of the clock regulatory circuits. Here we show that the GR suppresses Rev-erbα expression via the formation of a complex with CLOCK and BMAL1, which binds to the E-boxes in the Nr1d1 promoter. In this GR-CLOCK-BMAL1 complex, the GR does not directly bind to DNA, which is referred to as tethering. These findings provide new insights into the role of the GR in the control of circadian rhythm.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Dexametasona/administração & dosagem , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/agonistas
15.
Intern Med ; 57(7): 979-985, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269645

RESUMO

We herein report a case of pheochromocytoma occurring in the course of Parkinson's disease. The coexistence of these two disease is extremely rare, with only four cases hitherto reported across the public databases. It is also noteworthy that biochemical tests, which are critical for the diagnosis of pheochromocytoma, are severely confounded by dopaminergic medications for Parkinson's disease, highlighting the importance of image-based modalities in this setting. We further attempted to gain insight into the potential molecular mechanisms, proposing that hypoxia-inducible factor signaling could make these two diseases mutually exclusive, while excessive reactive oxygen species could enable their coexistence.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Dopaminérgicos/efeitos adversos , Dopaminérgicos/uso terapêutico , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Feocromocitoma/diagnóstico por imagem , Idoso , Povo Asiático , Humanos , Masculino , Doenças Raras/diagnóstico , Doenças Raras/terapia , Transdução de Sinais
16.
Diabetes Res Clin Pract ; 141: 237-243, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775676

RESUMO

BACKGROUND AND AIMS: Oxidized low-density lipoprotein (oxLDL) causes the development of atherosclerosis and kidney injury. Although circulating oxLDL levels were reportedly increased in type 2 diabetic patients with macroalbuminuria, it remains unclear whether albuminuria or the reduced glomerular filtration rate (GFR) is independently associated with the circulating oxLDL level. This study aimed to elucidate the association between the stage of diabetic nephropathy and serum malondialdehyde-modified LDL (MDA-LDL) and the ratio of MDA-LDL to LDL-cholesterol (MDA-LDL/LDL). METHODS AND RESULTS: This retroactive cross-sectional study used data from 402 patients with type 2 diabetes. Patients undergoing hemodialysis were excluded. Serum MDA-LDL levels were significantly increased with increases in severity of albuminuria (103 ±â€¯44 U/L, 109 ±â€¯54 U/L, and 135 ±â€¯72 U/L for normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively; P for trend = 0.020) but not according to the estimated GFR (eGFR). An increased MDA-LDL/LDL ratio was significantly associated with both increased albuminuria (35 ±â€¯13, 37 ±â€¯14, and 40 ±â€¯15 for normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively; P for trend = 0.003) and reduced eGFR (34 ±â€¯13, 36 ±â€¯13, 38 ±â€¯12, and 51 ±â€¯28 for grade 1, 2, 3 and 4, respectively; P for trend = 0.002). Multiple linear regression analysis showed that neither the albumin excretion rate nor eGFR but ln-transformed triglycerides and LDL-C levels were independent determinants of both serum MDA-LDL levels and MDA-LDL/LDL ratios. CONCLUSION: Serum MDA-LDL levels and MDA-LDL/LDL ratios were increased in those with dyslipidemia associated with diabetic kidney disease.


Assuntos
LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/etiologia , Malondialdeído/metabolismo , Estudos Transversais , Nefropatias Diabéticas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
17.
FEBS Lett ; 592(3): 422-433, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331016

RESUMO

The SNP rs7903146 at the transcription factor 7-like 2 (TCF7L2) locus is established as the strongest known genetic marker for type 2 diabetes via genome-wide association studies. However, the functional SNPs regulating TCF7L2 expression remain unclear. Here, we show that the SNP rs7074440 is a candidate functional SNP highly linked with rs7903146. A reporter plasmid with rs7074440 normal allele sequence exhibited 15-fold higher luciferase activity compared with risk allele sequence in hepatocytes, demonstrating a strong enhancer activity at rs7074440. Additionally, we identified C-FOS as an activator binding to the rs7074440 enhancer using a TFEL genome-wide screen method. Consistently, knockdown of C-FOS significantly reduced TCF7L2 expression in hepatocytes. Collectively, a novel enhancer regulating TCF7L2 expression was revealed through searching for functional SNPs.


Assuntos
Diabetes Mellitus Tipo 2/genética , Hepatócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Animais , Linhagem Celular , Feminino , Expressão Gênica , Células HEK293 , Células Hep G2 , Hepatócitos/citologia , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA