Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338462

RESUMO

Tuberculosis is one of the most common infectious diseases in the world, caused by Mycobacterium tuberculosis. The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of Mycobacterium tuberculosis, functioning as a chaperon when combined with the Clp complex. ClpC1 has emerged as a new target to discover anti-tuberculosis drugs. This study aimed to explore the ClpC1 inhibitors from actinomycetes, which have been known to provide abundant sources of antibiotics. Two cyclic peptides, including nocardamin (1), halolitoralin A (3), and a lactone pleurone (2), were isolated from the culture of Streptomyces aureus (VTCC43181). The structures of these compounds were determined based on the detailed analysis of their spectral data and comparison with references. This is the first time these compounds have been isolated from S. aureus. Compounds 1-3 were evaluated for their affection of ATPase activity of the recombinant ClpC1 protein. Of these compounds, halolitoralin A (1), a macrocyclic peptide, was effective for the ATPase hydrolysis of the ClpC1 protein.


Assuntos
Mycobacterium tuberculosis , Streptomyces , Staphylococcus aureus/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Proteínas de Bactérias/química , Adenosina Trifosfatases/metabolismo
2.
J Med Virol ; 94(2): 549-556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34730256

RESUMO

To investigate the molecular characteristics of human respiratory syncytial virus (HRSV) detected in Gyeonggi Province from 2015/16 to 2017/18, 2331 specimens from patients with sporadic acute respiratory illness and 85 specimens from four HRSV outbreaks in the postpartum care center were analyzed by real-time reverse transcription PCR. HRSVs were detected in 97 of the 2416 (4.0%) specimens, and among the positive specimens, 38 (39.2%) were identified as HRSV-A and 59 (60.8%) as HRSV-B. During the study periods, HRSV-B predominated in all seasons, except in 2016/17 during which HRSV-A predominated. Depending on the age groups, HRSV prevalence was the highest in 0- to 2-year-old patients. Comparison of noninfected subjects with HRSV-infected subjects revealed that HRSV infection more frequently resulted in fever, nasal obstruction, and wheezing, although the frequency of sore throat was low; however, comparison of the symptoms between HRSV-A- and HRSV-B-infected patients revealed no significant differences in symptoms. Phylogenetic analysis showed that all HRSV-A patients had an ON1 genotype, and all HRSV-B patients had an BA9 genotype. These results provide a valuable reference regarding the circulating pattern and molecular characterization of HRSV. Continuous monitoring will be essential to detect newly emerging HRSV genotypes.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Estações do Ano , Adulto Jovem
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362221

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.


Assuntos
Microbioma Gastrointestinal , Latilactobacillus sakei , Hepatopatia Gordurosa não Alcoólica , Probióticos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Inflamação/metabolismo , Triglicerídeos/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613723

RESUMO

Gut microbiota are known to play an important role in obesity. Enterobacter cloacae, a Gram-negative bacterium, has been considered a pathogenic bacterium related to obesity in the gut. In this study, we established an obesity model of C. elegans by feeding E. cloacae combined with a high glucose diet (HGD), which significantly induced lipid accumulation. An anti-lipid mechanism study revealed that the fatty acid composition and the expression level of fat metabolism-related genes were altered by feeding E. cloacae to C. elegans under HGD conditions. Lactic acid bacteria that showed antagonistic activity against E. cloacae were used to screen anti-obesity candidates in this model. Among them, L. pentosus MJM60383 (MJM60383) showed good antagonistic activity. C. eleans fed with MJM60383 significantly reduced lipid accumulation and triglyceride content. The ratio of C18:1Δ9/C18:0 was also changed in C. elegans by feeding MJM60383. In addition, the expression level of genes related to fatty acid synthesis was significantly decreased and the genes related to fatty acid ß-oxidation were up-regulated by feeding MJM60383. Moreover, MJM60383 also exhibited a high adhesive ability to Caco-2 cells and colonized the gut of C. elegans. Thus, L. pentosus MJM60383 can be a promising candidate for anti-obesity probiotics. To the best of our knowledge, this is the first report that uses E. cloacae combined with a high-glucose diet to study the interactions between individual pathogens and probiotics in C. elegans.


Assuntos
Lactobacillus pentosus , Probióticos , Animais , Humanos , Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Enterobacter cloacae , Células CACO-2 , Obesidade/metabolismo , Ácidos Graxos/metabolismo , Probióticos/farmacologia
5.
J Nat Prod ; 84(10): 2644-2663, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34628863

RESUMO

Rufomycin and ilamycin are synonymous for the same class of cyclopeptides, currently encompassing 33 structurally characterized isolates and 9 semisynthetic derivatives. Elucidation of new structures prioritized the consolidation of the names and established the structures of four diastereoisomeric rufomycins with a 2-piperidinone, named rufomycins 4-7, including full 1H/13C NMR assignments. The characteristic HSQC cross-peak for the CH-5, the hemiaminal carbon in amino acid #5, allows assignment of the stereocenters C-4 and C-5 within this ring. Semisynthetic derivatives (rufomycinSS 1, 2, and 3) were prepared from a rufomycins 4 and 6 mixture to validate the structural assignments. Based on the X-ray crystal structures of rufomycins 2 and 4, considering the NMR differences of rufomycins 7 vs 4-6 compared to rufomycinSS 1 vs 2 and 3, and taking into account that two major conformers, A and B, occur in both rufomycinSS 2 and 3, structural modeling was pursued. Collectively, this paper discusses the NMR spectroscopic differences of the stereoisomers and their possible 3D conformers and correlates these with the anti-Mycobacterium tuberculosis activity. In addition, a look at the history prioritizes names and numbering schemes for this group of antibiotics and leads to consolidated nomenclature for all currently known members, natural and semisynthetic derivatives, and serves to accommodate future discoveries.


Assuntos
Oligopeptídeos/química , Peptídeos Cíclicos/química , Antituberculosos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Terminologia como Assunto
6.
Microb Pathog ; 149: 104495, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32910984

RESUMO

Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Baculoviridae/genética , Galinhas , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
7.
J Nat Prod ; 83(3): 657-667, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32031795

RESUMO

This study represents a systematic chemical and biological study of the rufomycin (RUF) class of cyclic heptapeptides, which our anti-TB drug discovery efforts have identified as potentially promising anti-TB agents that newly target the caseinolytic protein C1, ClpC1. Eight new RUF analogues, rufomycins NBZ1-NBZ8 (1-8), as well as five known peptides (9-13) were isolated and characterized from the Streptomyces atratus strain MJM3502. Advanced Marfey's and X-ray crystallographic analysis led to the assignment of the absolute configuration of the RUFs. Several isolates exhibited potent activity against both pathogens M. tuberculosis H37Rv and M. abscessus, paired with favorable selectivity (selectivity index >60), which collectively underscores the promise of the rufomycins as potential anti-TB drug leads.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/farmacologia , Streptomyces/química , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Proc Natl Acad Sci U S A ; 114(52): E11131-E11140, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229819

RESUMO

Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.


Assuntos
Actinobacteria , Proteínas de Bactérias , Genes Bacterianos/fisiologia , Lactamas/metabolismo , Macrolídeos/metabolismo , Família Multigênica/fisiologia , Filogenia , Tiazóis/metabolismo , Tionas/metabolismo , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Biologia Computacional
9.
Bioprocess Biosyst Eng ; 43(2): 249-259, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31555900

RESUMO

The ß-glucanase produced from Bacillus sp. CSB55 not only depicts the potent industrial characteristics but also relates as bio-industrial catalyst supporting the spontaneous formation of the products, high hydrolytic efficiency, and feasibility of the enzymatic reaction. A homogeneous ß-glucanase (GluB55) was purified via various purification processes resulting in 11.69% yield and 14.24-fold purity. Biochemical characterization of the purified enzyme revealed the molecular mass of approximately 40 kDa, which was verified by zymography. The optimum activity of GluB55 was determined at pH 7.2 and 55 °C. GluB55 could highly hydrolyze carboxymethylcellulose and was stable over a wide range of pH, retaining more than 70% residual activity at pH 5.8-11.0 and carried 100% thermostability as high as 60 °C. In addition, it showed 68% residual activity at 70 °C. The N-terminal amino acid sequence of GluB55 was Ala-Asn-Pro-Glu-Leu-Val-Asn-X-Gln-Ala-X-X-Ala-X-Gln-Gly. The enzyme activity was stimulated by Co2+ (158.6%), Zn2+ (211.1%), Mn2+ (264.4%), and Ba2+ (211.4%). Enzyme kinetics showed Km and Vmax values of 0.022 mg mL-1 and 994.56 ± 3.72 U mg-1, respectively. Q10 was calculated to be 1.12. ∆H, ∆G, and ∆S were low revealing that the formation of the transition phase and conversion to the product is very well organized. The lower the free energy change (∆G), the more feasible is the reaction.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Catálise , Estabilidade Enzimática , Temperatura Alta
10.
Artigo em Inglês | MEDLINE | ID: mdl-30602512

RESUMO

ClpC1 is an emerging new target for the treatment of Mycobacterium tuberculosis infections, and several cyclic peptides (ecumicin, cyclomarin A, and lassomycin) are known to act on this target. This study identified another group of peptides, the rufomycins (RUFs), as bactericidal to M. tuberculosis through the inhibition of ClpC1 and subsequent modulation of protein degradation of intracellular proteins. Rufomycin I (RUFI) was found to be a potent and selective lead compound for both M. tuberculosis (MIC, 0.02 µM) and Mycobacterium abscessus (MIC, 0.4 µM). Spontaneously generated mutants resistant to RUFI involved seven unique single nucleotide polymorphism (SNP) mutations at three distinct codons within the N-terminal domain of clpC1 (V13, H77, and F80). RUFI also significantly decreased the proteolytic capabilities of the ClpC1/P1/P2 complex to degrade casein, while having no significant effect on the ATPase activity of ClpC1. This represents a marked difference from ecumicin, which inhibits ClpC1 proteolysis but stimulates the ATPase activity, thereby providing evidence that although these peptides share ClpC1 as a macromolecular target, their downstream effects are distinct, likely due to differences in binding.


Assuntos
Proteases Dependentes de ATP/antagonistas & inibidores , Antituberculosos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
11.
Plant Biotechnol J ; 17(1): 118-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29781573

RESUMO

Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than nontransgenic controls under field-drought conditions. Genomewide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice.


Assuntos
Genes de Plantas/genética , Lignina/biossíntese , Oryza/genética , Estômatos de Plantas/fisiologia , Fatores de Transcrição/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Filogenia , Fatores de Transcrição/fisiologia
12.
Plant Biotechnol J ; 17(7): 1289-1301, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565833

RESUMO

In legumes, nitrogen (N) can be stored as ureide allantoin and transported by ureide permease (UPS) from nodules to leaves where it is catabolized to release ammonium and assimilation to amino acids. In non-leguminous plants especially rice, information on its roles in N metabolism is scarce. Here, we show that OsUPS1 is localized in plasma membranes and are highly expressed in vascular tissues of rice. We further evaluated an activation tagging rice overexpressing OsUPS1 (OsUPS1OX ) under several N regimes. Under normal field conditions, panicles from OsUPS1OX plants (14 days after flowering (DAF)) showed significant allantoin accumulation. Under hydroponic system at the vegetative stage, plants were exposed to N-starvation and measured the ammonium in roots after resupplying with ammonium sulphate. OsUPS1OX plants displayed higher ammonium uptake in roots compared to wild type (WT). When grown under low-N soil supplemented with different N-concentrations, OsUPS1OX exhibited better growth at 50% N showing higher chlorophyll, tiller number and at least 20% increase in shoot and root biomass relative to WT. To further confirm the effects of regulating the expression of OsUPS1, we evaluated whole-body-overexpressing plants driven by the GOS2 promoter (OsUPS1GOS2 ) as well as silencing plants (OsUPS1RNAi ). We found significant accumulation of allantoin in leaves, stems and roots of OsUPS1GOS2 while in OsUPS1RNAi allantoin was significantly accumulated in roots. We propose that OsUPS1 is responsible for allantoin partitioning in rice and its overexpression can support plant growth through accumulation of allantoin in sink tissues which can be utilized when N is limiting.


Assuntos
Alantoína/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Oryza/enzimologia , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroponia , Proteínas de Membrana Transportadoras/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
13.
BMC Complement Altern Med ; 19(1): 25, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658631

RESUMO

BACKGROUND: A combination of parts of Cornus officinalis, Rosa multiflora, Lespedeza bicolor, Platycladus orientalis, and Castanea crenata is commonly used for alleviating inflammatory skin disorders. Therefore, this study was carried out to evaluate the in vitro and in vivo preventive effects of a novel herbal formula made from the five plants (C2RLP) against atopic dermatitis in BALB/C mice. METHODS: Mice were allocated into five groups (n = 8) including, control (Normal, petrolatum, and betamethasone treated) and treatment groups (treated with 2.5 and 5% C2RLP ointment). Atopic lesion was induced by applying 1-Chloro-2, 4-dinitrobenzene to the dorsal thoracic area of mice. Macroscopical and histological evaluations were performed to determine the effects of treatment on the progress of the skin lesions. The effects of treatment on the production and release of interleukins, interferon -ϒ, nitrite, prostaglandin E2, thymus and activation-receptor chemokine, and ß-hexosaminidase were evaluated and comparisons were made between groups. In addition, the chemical compounds present in C2RLP were identified by Liquid Chromatography-Mass Spectrometry. RESULTS: Topical application of C2RLP reduced the dermatitis score and suppressed histopathological changes in mice. Treatment significantly reduced (P < 0.05) plasma IL-4 level, the production of nitrite, prostaglandin E2, and thymus and activation-receptor chemokine production. The lipopolysaccharide-induced iNOS-mRNA expression in RAW 264.7 cells was also suppressed by high concentrations of C2RLP. In addition, C2RLP showed an inhibitory effect against DPPH free radical (IC50 = 147.5 µg/ml) and ß-hexosaminidase release (IC50 = 179.5 µg/ml). Liquid Chromatography-Mass Spectrometry analysis revealed the presence of various compounds, including loganin, ellagic acid, and kaempferol 3-glucoside. CONCLUSION: Down-regulation of T- helper 2 cellular responses and suppression of inflammatory mediators contributed to the protective effects of C2RLP from atopic dermatitis in BALB/C mice.


Assuntos
Dermatite Atópica/metabolismo , Dermatite Atópica/prevenção & controle , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Citocinas/sangue , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/toxicidade , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Pele/patologia , Células Th2/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 499(4): 979-984, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29626469

RESUMO

The coumarins decursin and decursinol angelate, which are found in Angelica gigas Nakai, have a variety of biological functions. Here, we show that treatment with these compounds improves wound healing by HaCaT human keratinocytes. Wound healing was increased by treatment with up to a threshold concentration of decursin, decursinol angelate, a mixture of both, and a nano-emulsion of these compounds, but inhibited by treatment with higher concentrations. Immunoblotting and fluorescence imaging of cells expressing an epidermal growth factor receptor (EGFR) biosensor demonstrated that these compounds did not stimulate wound healing by inducing EGFR phosphorylation. Rather, transcriptional analysis revealed that decursin and decursinol angelate improved wound healing by upregulating the expression of genes encoding extracellular matrix remodeling proteins, inflammatory cytokines, and growth factors.


Assuntos
Benzopiranos/farmacologia , Butiratos/farmacologia , Citocinas/genética , Proteínas da Matriz Extracelular/genética , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Queratinócitos/patologia , Regulação para Cima/genética , Cicatrização/genética , Linhagem Celular , Citocinas/metabolismo , Emulsões/química , Receptores ErbB/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Nanopartículas/química , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
15.
Crit Rev Food Sci Nutr ; 58(16): 2743-2767, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28880573

RESUMO

The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.


Assuntos
Bacteriocinas/farmacologia , Microbiologia de Alimentos , Conservação de Alimentos , Conservantes de Alimentos/farmacologia , Bacteriocinas/química
16.
J Org Chem ; 83(12): 6664-6672, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29792329

RESUMO

Residual complexity (RC) involves the impact of subtle but critical structural and biological features on drug lead validation, including unexplained effects related to unidentified impurities. RC commonly plagues drug discovery efforts due to the inherent imperfections of chromatographic separation methods. The new diketopiperazine, rufomyazine (6), and the previously known antibiotic, rufomycin (7), represent a prototypical case of RC that (almost) resulted in the misassignment of biological activity. The case exemplifies that impurities well below the natural abundance of 13C (1.1%) can be highly relevant and calls for advanced analytical characterization of drug leads with extended molar dynamic ranges of >1:1,000 using qNMR and LC-MS. Isolated from an actinomycete strain, 6 was originally found to be active against Mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) of 2 µg/mL and high selectivity. As a part of lead validation, the dipeptide was synthesized and surprisingly found to be inactive. The initially observed activity was eventually attributed to a very minor contamination (0.24% [m/m]) with a highly active cyclic peptide (MIC ∼ 0.02 µM), subsequently identified as an analogue of 7. This study illustrates the serious implications RC can exert on organic chemistry and drug discovery, and what efforts are vital to improve lead validation and efficiency, especially in NP-related drug discovery programs.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética
17.
Plant Biotechnol J ; 15(10): 1295-1308, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28244201

RESUMO

The AP2/ERF family is a plant-specific transcription factor family whose members have been associated with various developmental processes and stress tolerance. Here, we functionally characterized the drought-inducible OsERF48, a group Ib member of the rice ERF family with four conserved motifs, CMI-1, -2, -3 and -4. A transactivation assay in yeast revealed that the C-terminal CMI-1 motif was essential for OsERF48 transcriptional activity. When OsERF48 was overexpressed in an either a root-specific (ROXOsERF48 ) or whole-body (OXOsERF48 ) manner, transgenic plants showed a longer and denser root phenotype compared to the nontransgenic (NT) controls. When plants were grown on a 40% polyethylene glycol-infused medium under in vitro drought conditions, ROXOsERF48 plants showed a more vigorous root growth than OXOsERF48 and NT plants. In addition, the ROXOsERF48 plants exhibited higher grain yield than OXOsERF48 and NT plants under field-drought conditions. We constructed a putative OsERF48 regulatory network by cross-referencing ROXOsERF48 root-specific RNA-seq data with a co-expression network database, from which we inferred the involvement of 20 drought-related genes in OsERF48-mediated responses. These included genes annotated as being involved in stress signalling, carbohydrate metabolism, cell-wall proteins and drought responses. They included, OsCML16, a key gene in calcium signalling during abiotic stress, which was shown to be a direct target of OsERF48 by chromatin immunoprecipitation-qPCR analysis and a transient protoplast expression assay. Our results demonstrated that OsERF48 regulates OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biomassa , Sinalização do Cálcio , Redes Reguladoras de Genes , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Estresse Fisiológico
18.
J Nat Prod ; 80(10): 2630-2643, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29035048

RESUMO

This report describes an approach using 1H NMR iterative full-spin analysis (HiFSA) to extract definitive structural information on unknown peptides from 1D 1H NMR data. By comparing the experimental data and HiFSA fingerprint of a known analogue, it is possible to isolate the characteristic 1H subspectrum of the different amino acids and, thus, elucidate the structure of the peptide. To illustrate this methodology, a comprehensive analysis of five new anti-Mycobacterium tuberculosis peptides (2-6), all analogues of ecumicin (1), was carried out. The method was validated by demonstrating congruence of the HiFSA-based structures with all available data, including MS and 2D NMR. The highly reproducible HiFSA fingerprints of the new ∼1600 amu peptides were generated in this process. Besides oligo-peptides, the HiFSA sequencing approach could be extended to all oligomeric compounds consisting of chains of monomers lacking H-H spin-spin coupling across the moieties. HiFSA sequencing is capable of differentiating complex oligomers that exhibit minor structural differences such as shifted hydoxyl or methyl groups. Because it employs the basic and most sensitive 1D 1H NMR experiment, HiFSA sequencing enables the exploration of peptide analogues up to at least 2000 amu, even with basic contemporary spectrometers and when only sub-milligram amounts of isolates are available.


Assuntos
Antituberculosos/isolamento & purificação , Oligopeptídeos/química , Prótons , Antituberculosos/química , Antituberculosos/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação
19.
Molecules ; 22(6)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590420

RESUMO

BACKGROUND: ß-lactoglobulin hydrolysates (BLGH) have shown antioxidant, antihypertensive, antimicrobial, and opioid activity. In the current study, an innovative combination of high hydrostatic pressure and enzymatic hydrolysis (HHP-EH) was used to increase the yield of short bioactive peptides, and evaluate the anti-inflammatory and antioxidant properties of the BLGH produced by the HHP-EH process. METHOD: BLG was enzymatically hydrolyzed by different proteases at an enzyme-to-substrate ratio of 1:100 under HHP (100 MPa) and compared with hydrolysates obtained under atmospheric pressure (AP-EH at 0.1 MPa). The degree of hydrolysis (DH), molecular weight distribution, and the antioxidant and anti-inflammatory properties of hydrolysates in chemical and cellular models were evaluated. RESULTS: BLGH obtained under HHP-EH showed higher DH than the hydrolysates obtained under AP-EH. Free radical scavenging and the reducing capacity were also significantly stronger in HHP-BLGH compared to AP-BLGH. The BLGH produced by alcalase (Alc) (BLG-Alc) showed significantly higher antioxidant properties among the six enzymes examined in this study. The anti-inflammatory properties of BLG-HHP-Alc were observed in lipopolysaccharide-stimulated macrophage cells by a lower level of nitric oxide production and the suppression of the synthesis of pro-inflammatory cytokines. Peptide sequencing revealed that 38% of the amino acids in BLG-HHP-Alc are hydrophobic and aromatic residues, which contribute to its anti-inflammatory properties. CONCLUSIONS: Enzymatic hydrolysis of BLG under HHP produces a higher yield of short bioactive peptides with potential antioxidant and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Lactoglobulinas/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Sobrevivência Celular , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Hidrólise , Pressão Hidrostática , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Molecules ; 22(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394279

RESUMO

Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Caseínas/síntese química , Caseínas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Pressão Hidrostática , Mediadores da Inflamação/metabolismo , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Peso Molecular , Peptídeo Hidrolases , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA