Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(4): 5548-5554, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121773

RESUMO

We introduce the concept of a quasi-triply-degenerate state (QTDS) and demonstrate its relation to an effective zero refractive index (ZRI) in a two-dimensional (2D) square lattice photonic crystal (PC) of all dielectric pillars. A QTDS is characterized by a triple band structure (TBS), wherein two of the bands manifest a linear dispersion around the Γ-point, i.e. a Dirac-like cone, while the third is a flat zero refractive index (ZRI) band with a frequency that is degenerate with one of the other bands. Significantly, we find that while triple degeneracy of the bands is not observed, the three bands approach one another so close that the observable properties of PCs adapted to the QTDS frequency perform as expected of a ZRI material. We closely examine the ZRI band at the Γ-point and show that by varying the PC material and structure parameters, the ZRI band behavior extends over a wide range of dielectric refractive indices enabling materials made with polymeric constituents. Moreover, the ZRI characteristics are robust and tolerant over a range of frequencies. Furthermore, the computational screening we employ to identify QTDS parameters enables the rational design of low-loss 2D ZRI materials for a broad range of photonic applications, including distributing a common reference phase, cloaking and focusing light.

2.
Micromachines (Basel) ; 15(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38398969

RESUMO

A wax-based contact printing method to create microfluidic devices is demonstrated. This printing technology demonstrates a new pathway to rapid, cost-effective device prototyping, eliminating the use of expensive micromachining equipment and chemicals. Derived from the traditional Ukrainian Easter egg painting technique called "pysanky" a series of microfluidic devices were created. Pysanky is the use of a heated wax stylus, known as a "kistka", to create micro-sized, intricate designs on the surface of an egg. The proposed technique involves the modification of an x-y-z actuation translation system with a wax extruder tip in junction with Polydimethysiloxane (PDMS) device fabrication techniques. Initial system optimization was performed considering design parameters such as extruder tip size, contact angle, write speed, substrate temperature, and wax temperature. Channels created ranged from 160 to 900 µm wide and 10 to 150 µm high based upon system operating parameters set by the user. To prove the capabilities of this technology, a series of microfluidic mixers were created via the wax technique as well as through traditional photolithography: a spiral mixer, a rainbow mixer, and a linear serial dilutor. A thermo-fluidic computational fluid dynamic (CFD) model was generated as a means of enabling rational tuning, critical to the optimization of systems in both normal and extreme conditions. A comparison between the computational and experimental models yielded a wax height of 57.98 µm and 57.30 µm, respectively, and cross-sectional areas of 11,568 µm2 and 12,951 µm2, respectively, resulting in an error of 1.18% between the heights and 10.76% between the cross-sectional areas. The device's performance was then compared using both qualitative and quantitative measures, considering factors such as device performance, channel uniformity, repeatability, and resolution.

3.
Sci Rep ; 6: 35911, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786279

RESUMO

We study the optical response of monodisperse colloids of core-shell plasmonic nanoparticles and introduce a computational approach to optimize absorption for photothermal applications that require dilute colloids of non-interacting particles with a prescribed volume fraction. Since the volume fraction is held constant, the particle concentration is size-dependent. Optimization is achieved by comparing the absorption spectra of colloids as a function of particle size and structure. We demonstrate the approach via application to colloids of core-shell SiO2@Au and Fe3O4@Au nanoparticles with particle sizes that range from 5-100 nm and with the incident wavelength varying from 600-1200 nm. The absorption spectra are predicted using Mie theory and the analysis shows that there is a unique mix of parameters (core radius, shell thickness, wavelength) that maximize absorption, independent of the value of volume fraction. We show that lossy Fe3O4 cores produce a much broader absorption peak with much less sensitivity to variations in particle structure and wavelength than lossless SiO2 cores. This approach can be readily adapted to colloids of nanoparticles with arbitrary materials, shapes and structure using appropriate numerical methods to compute the absorption spectra. As such, it is useful for the rational design of colloids and process variables for a broad range of photothermal applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA