Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Infect Dis ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271564

RESUMO

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

2.
Blood ; 139(11): 1760-1765, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34958669

RESUMO

Superoxide dismutase 2 (SOD2) catalyzes the dismutation of superoxide to hydrogen peroxide in mitochondria, limiting mitochondrial damage. The SOD2 amino acid valine-to-alanine substitution at position 16 (V16A) in the mitochondrial leader sequence is a common genetic variant among patients with sickle cell disease (SCD). However, little is known about the cardiovascular consequences of SOD2V16A in SCD patients or its impact on endothelial cell function. Here, we show SOD2V16A associates with increased tricuspid regurgitant velocity (TRV), systolic blood pressure, right ventricle area at systole, and declined 6-minute walk distance in 410 SCD patients. Plasma lactate dehydrogenase, a marker of oxidative stress and hemolysis, significantly associated with higher TRV. To define the impact of SOD2V16A in the endothelium, we introduced the SOD2V16A variant into endothelial cells. SOD2V16A increases hydrogen peroxide and mitochondrial reactive oxygen species (ROS) production compared with controls. Unexpectedly, the increased ROS was not due to SOD2V16A mislocalization but was associated with mitochondrial complex IV and a concomitant decrease in basal respiration and complex IV activity. In sum, SOD2V16A is a novel clinical biomarker of cardiovascular dysfunction in SCD patients through its ability to decrease mitochondrial complex IV activity and amplify ROS production in the endothelium.


Assuntos
Anemia Falciforme , Células Endoteliais , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Células Endoteliais/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(10): 4307-4315, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765529

RESUMO

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Humanos , Núcleo Celular/metabolismo , Células HeLa , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Microscopia , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo
4.
Nano Lett ; 21(11): 4765-4773, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34030445

RESUMO

The cell-surface glycocalyx serves as a physiological barrier regulating cellular accessibility to macromolecules and other cells. Conventional glycocalyx characterization has largely been morphological rather than functional. Here, we demonstrated direct glycocalyx anchoring of DNA origami nanotiles and performed a comprehensive comparison with traditional origami targeting to the phospholipid bilayer (PLB) using cholesterol. While DNA nanotiles effectively accessed single-stranded DNA initiators anchored on the glycocalyx, their accessibility to the underlying PLB was only permitted by extended nanotile-to-initiator spacing or by enzymatic glycocalyx degradation using trypsin or pathogenic neuraminidase. Thus, the DNA nanotiles, being expelled by the physiologic glycocalyx, provide an effective functional measure of the glycocalyx barrier integrity and faithfully predict cell-to-cell accessibility during DNA-guided multicellular assembly. Lastly, the glycocalyx-anchoring mechanism enabled enhanced cell-surface stability and cellular uptake of nanotiles compared to PLB anchoring. This research lays the foundation for future development of DNA nanodevices to access the cell surface.


Assuntos
DNA , Glicocálix , Membrana Celular , DNA de Cadeia Simples
5.
World J Urol ; 39(7): 2685-2690, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33078215

RESUMO

PURPOSE: Aging increases oxidative stress, which can have delirious effects on smooth and striated muscle resulting in bladder dysfunction. Consequently, in women aged over 60 years, urinary incontinence (UI) is a prevalent health problem. Despite the prevalence and consequences, UI continues to be undertreated simply because there are few therapeutic options. METHODS: Here we investigated whether 8-aminoguanine (8-AG), a purine nucleoside phosphorylase (PNPase inhibitor), would restore urethra and external sphincter (EUS) muscle morphology in the aged rat. Aged (> 25 months) female Fischer 344 rats were randomized to oral treatment with 8-AG (6 weeks) or placebo, and the urethra and EUS were evaluated by electron microscopy and protein expression (western immunoblotting). RESULTS: Aging was associated with mitochondrial degeneration in smooth and striated muscle cells as compared to young rats. We also observed a significant increase in biomarkers such as PARP, a downstream activator of oxidative/nitrosative stress. Treatment of aged rats with 8-AG normalized all abnormalities to that of a younger state. CONCLUSIONS: 8-AG, a potent inhibitor of PNPase, reverses age-related lower urinary tract morphological and biochemical changes. Our observations support the concept that 8-AG will reverse age-induced lower urinary tract disorders such as UI. These initial findings could have therapeutic implications for the prevention and treatment of age-related UI.


Assuntos
Guanina/análogos & derivados , Músculo Estriado/efeitos dos fármacos , Músculo Estriado/patologia , Uretra/efeitos dos fármacos , Uretra/patologia , Animais , Feminino , Guanina/farmacologia , Guanina/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
6.
J Biol Chem ; 294(28): 10773-10788, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152064

RESUMO

Nephrin is an immunoglobulin-type cell-adhesion molecule with a key role in the glomerular interpodocyte slit diaphragm. Mutations in the nephrin gene are associated with defects in the slit diaphragm, leading to early-onset nephrotic syndrome, typically resistant to treatment. Although the endocytic trafficking of nephrin is essential for the assembly of the slit diaphragm, nephrin's specific endocytic motifs remain unknown. To search for endocytic motifs, here we performed a multisequence alignment of nephrin and identified a canonical YXXØ-type motif, Y1139RSL, in the nephrin cytoplasmic tail, expressed only in primates. Using site-directed mutagenesis, various biochemical methods, single-plane illumination microscopy, a human podocyte line, and a human nephrin-expressing zebrafish model, we found that Y1139RSL is a novel endocytic motif and a structural element for clathrin-mediated nephrin endocytosis that functions as a phosphorylation-sensitive signal. We observed that Y1139RSL motif-mediated endocytosis helps to localize nephrin to specialized plasma membrane domains in podocytes and is essential for normal foot process organization into a functional slit diaphragm between neighboring foot processes in zebrafish. The importance of nephrin Y1139RSL for healthy podocyte development was supported by population-level analyses of genetic variations at this motif, revealing that such variations are very rare, suggesting that mutations in this motif have autosomal-recessive negative effects on kidney health. These findings expand our understanding of the mechanism underlying nephrin endocytosis and may lead to improved diagnostic tools or therapeutic strategies for managing early-onset, treatment-resistant nephrotic syndrome.


Assuntos
Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Clatrina/metabolismo , Embrião não Mamífero/metabolismo , Endocitose , Humanos , Glomérulos Renais/ultraestrutura , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Morfolinos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Podócitos/citologia , Podócitos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
7.
Glia ; 68(10): 2040-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32187401

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Hipercinese/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Animais , Colesterol/genética , Hipercinese/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína FUS de Ligação a RNA/genética
8.
Proc Natl Acad Sci U S A ; 114(38): E7997-E8006, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874589

RESUMO

G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and ß-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Melatonina/biossíntese , Mitocôndrias/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais , Animais , Lesões Encefálicas/genética , Isquemia Encefálica/genética , Citocromos c/genética , Citocromos c/metabolismo , Masculino , Melatonina/genética , Camundongos , Mitocôndrias/genética , Receptor MT1 de Melatonina/genética
9.
Glia ; 66(9): 1999-2012, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761559

RESUMO

Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.


Assuntos
Apoptose/fisiologia , Doenças Desmielinizantes/enzimologia , Glicogênio Sintase Quinase 3 beta/deficiência , Bainha de Mielina/enzimologia , Oligodendroglia/enzimologia , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Caspases/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/enzimologia , Microglia/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia
10.
Prehosp Emerg Care ; 22(2): 266-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28910187

RESUMO

OBJECTIVE: The pharmacokinetics of IO administered lipid soluble amiodarone during ventricular fibrillation (VF) with ongoing CPR are unknown. This study measured mean plasma concentration over 5 minutes, maximum plasma concentration (Cmax), and time to maximum concentration (Tmax) of amiodarone administered by the sternal IO (SIO), tibial IO (TIO), and IV routes in a swine model of VF with ongoing CPR. METHODS: Twenty-one Yorkshire-cross swine were randomly assigned to three groups: SIO, TIO, and IV. Ventricular fibrillation was induced under general anesthesia. After 4 minutes in VF, 300 mg amiodarone was administered as indicated by group assignment. Serial blood specimens collected at 30, 60, 90, 120, 150, 180, 240, and 300 seconds were analyzed using high performance liquid chromatography with tandem mass spectrometry. RESULTS: The mean plasma concentration of IV amiodarone over 5 minutes was significantly higher than the TIO group at 60 seconds (P = 0.02) and 90 seconds (P = 0.017) post-injection. No significant differences in Cmax between the groups were found (P <0.05). The Tmax of amiodarone was significantly shorter in the SIO (99 secs) and IV (86 secs) groups compared to the TIO group (215 secs); P = 0.002 and P = 0.002, respectively. CONCLUSIONS: The SIO and IV routes of amiodarone administration were comparable. The TIO group took nearly three times longer to reach Tmax than the SIO and IV groups, likely indicating depot of lipid-soluble amiodarone in adipose-rich tibial yellow bone marrow. The SIO route was more effective than the TIO route for amiodarone delivery in a swine model of VF with ongoing CPR. Further investigations are necessary to determine if the kinetic differences found between the SIO and TIO routes in this study affect survival of VF in humans.


Assuntos
Amiodarona/administração & dosagem , Antiarrítmicos/administração & dosagem , Modelos Animais de Doenças , Infusões Intraósseas/métodos , Esterno , Tíbia , Fibrilação Ventricular/tratamento farmacológico , Amiodarona/farmacocinética , Animais , Antiarrítmicos/farmacocinética , Reanimação Cardiopulmonar/métodos , Cromatografia Líquida de Alta Pressão , Serviços Médicos de Emergência , Estudos Prospectivos , Distribuição Aleatória , Suínos , Espectrometria de Massas em Tandem
11.
Blood ; 119(3): 756-66, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22031862

RESUMO

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Assuntos
Comunicação Celular , Células Dendríticas/metabolismo , Endossomos/metabolismo , Exossomos/genética , MicroRNAs/fisiologia , Animais , Apresentação de Antígeno , Biomarcadores/metabolismo , Citosol/metabolismo , Células Dendríticas/citologia , Exossomos/metabolismo , Perfilação da Expressão Gênica , Fusão de Membrana , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
13.
Front Microbiol ; 15: 1347488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380104

RESUMO

Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.

14.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790404

RESUMO

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

15.
Exp Eye Res ; 116: 298-307, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24095823

RESUMO

The current study investigates the structural and compositional changes of ocular basement membranes (BMs) during long-term diabetes. By comparing retinal vascular BMs and the inner limiting membrane (ILM) from diabetic and non-diabetic human eyes by light and transmission electron microscopy (TEM), a massive, diabetes-related increase in the thickness of these BMs was detected. The increase in ILM thickness was confirmed by atomic force microscopy (AFM) on native ILM flat-mount preparations. AFM also detected a diabetes-induced increase in ILM stiffness. The changes in BM morphology and biophysical properties were accompanied by partial changes in the biochemical composition as shown by immunocytochemistry and western blots: agrin, fibronectin and tenascin underwent relative increases in concentration in diabetic BMs as compared to non-diabetic BMs. Fibronectin and tenascin were particularly high in the BMs of outlining microvascular aneurisms. The present data showed that retinal vascular BMs and the ILM undergo morphological, biomechanical and compositional changes during long-term diabetes. The increase in BM thickness not only resulted from an up-regulation of the standard BM proteins, but also from the expression of diabetes-specific extracellular matrix proteins that are not normally found in retinal BMs.


Assuntos
Membrana Basal/química , Retinopatia Diabética/metabolismo , Proteínas da Matriz Extracelular/análise , Retina/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Membrana Basal/ultraestrutura , Western Blotting , Retinopatia Diabética/patologia , Retinopatia Diabética/fisiopatologia , Elasticidade , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Retina/ultraestrutura
16.
Front Cell Infect Microbiol ; 13: 1150658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056705

RESUMO

Introduction: Klebsiella pneumoniae (Kp) is a common cause of hospital-acquired pneumonia. Although previous studies have suggested that evasion of phagocytic uptake is a virulence determinant of Kp, few studies have examined phagocytosis sensitivity in clinical Kp isolates. Methods: We screened 19 clinical respiratory Kp isolates that were previously assessed for mucoviscosity for their sensitivity to macrophage phagocytic uptake, and evaluated phagocytosis as a functional correlate of in vivo Kp pathogenicity. Results: The respiratory Kp isolates displayed heterogeneity in the susceptibility to macrophage phagocytic uptake, with 14 out of 19 Kp isolates displaying relative phagocytosis-sensitivity compared to the reference Kp strain ATCC 43816, and 5 out of 19 Kp isolates displaying relative phagocytosis-resistance. Intratracheal infection with the non-mucoviscous phagocytosis-sensitive isolate S17 resulted in a significantly lower bacterial burden compared to infection with the mucoviscous phagocytosis-resistant isolate W42. In addition, infection with S17 was associated with a reduced inflammatory response, including reduced bronchoalveolar lavage fluid (BAL) polymorphonuclear (PMN) cell count, and reduced BAL TNF, IL-1ß, and IL-12p40 levels. Importantly, host control of infection with the phagocytosis-sensitive S17 isolate was impaired in alveolar macrophage (AM)-depleted mice, whereas AM-depletion had no significant impact on host defense against infection with the phagocytosis-resistant W42 isolate. Conclusion: Altogether, these findings show that phagocytosis is a primary determinant of pulmonary clearance of clinical Kp isolates.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Pulmão/microbiologia , Fagocitose , Macrófagos Alveolares , Neutrófilos , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia
17.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398264

RESUMO

Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections rarely overwhelm the host but are associated with high mortality. The complement system is a key host defense against bloodstream infection. However, there are varying reports of serum resistance among KPC-Kp isolates. We assessed growth of 59 KPC-Kp clinical isolates in human serum and found increased resistance in 16/59 (27%). We identified five genetically-related bloodstream isolates with varying serum resistance profiles collected from a single patient during an extended hospitalization marked by recurrent KPC-Kp bloodstream infections. We noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ, that emerged during infection was associated with decreased polysaccharide capsule content, and resistance to complement-mediated killing. Surprisingly, disruption of wcaJ increased deposition of complement proteins on the microbial surface compared to the wild-type strain and led to increased complement-mediated opsono-phagocytosis in human whole blood. Disabling opsono-phagocytosis in the airspaces of mice impaired in vivo control of the wcaJ loss-of-function mutant in an acute lung infection model. These findings describe the rise of a capsular mutation that promotes KPC-Kp persistence within the host by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

18.
Commun Biol ; 5(1): 35, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017668

RESUMO

New research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/-;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.


Assuntos
Cognição/fisiologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Fagocitose/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação Oxidativa , Recuperação de Função Fisiológica/fisiologia
19.
Neurobiol Dis ; 43(1): 52-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20883784

RESUMO

In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids, and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids, and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell's autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury and are the subject of this review. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."


Assuntos
Autofagia/fisiologia , Lesões Encefálicas/patologia , Animais , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Homeostase/fisiologia , Humanos , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/terapia
20.
Sci Rep ; 11(1): 12265, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112915

RESUMO

The endothelial glycocalyx (eGC) is considered a key regulator of several mechanisms that prevent vascular injury and disease. Degradation of this macromolecular layer may be associated with post-transplant graft dysfunction. In this study, we aimed to demonstrate the benefits of eGC protection via heparanase inhibition on graft quality. We established rat models of lung grafts with damaged or preserved eGC using ischemic insult and transplanted the grafts into recipients. Lung grafts were also subjected to normothermic ex vivo lung perfusion for detailed assessment under isolated conditions. Physiologic parameters and eGC-associated cellular events were assessed in grafts before and after reperfusion. Structurally degraded eGC and highly activated heparanase were confirmed in lungs with ischemic insult. After transplant, lungs with damaged eGC exhibited impaired graft function, inflammation, edema, and inflammatory cell migration. Increased eGC shedding was evident in the lungs after reperfusion both in vivo and ex vivo. These reperfusion-related deficiencies were significantly attenuated in lungs with preserved eGC following heparanase inhibition. Our studies demonstrated that eGC plays a key role in maintaining lung graft quality and function. Heparanase inhibition may serve as a potential therapeutic to preserve eGC integrity, leading to improved post-transplant outcomes.


Assuntos
Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Glicocálix/metabolismo , Sobrevivência de Enxerto , Transplante de Pulmão , Preservação de Órgãos , Animais , Biomarcadores , Endotélio/patologia , Imuno-Histoquímica , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA