Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Rev Mol Cell Biol ; 8(11): 894-903, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17912263

RESUMO

The final stages of mitosis begin in anaphase, when the mitotic spindle segregates the duplicated chromosomes. Mitotic exit is then completed by disassembly of the spindle and packaging of chromosomes into daughter nuclei. The successful completion of mitosis requires that these events occur in a strict order. Two main mechanisms govern progression through late mitosis: dephosphorylation of cyclin-dependent kinase (Cdk) substrates and destruction of the substrates of the anaphase-promoting complex (APC). Here, we discuss the hypothesis that the order of late mitotic events depends, at least in part, on the order in which different Cdk and APC substrates are dephosphorylated or destroyed, respectively.


Assuntos
Mitose , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclinas/metabolismo , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Especificidade por Substrato , Complexos Ubiquitina-Proteína Ligase/metabolismo
2.
Mol Cell ; 30(4): 437-46, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18498748

RESUMO

The completion of mitosis depends on protein ubiquitination by the anaphase-promoting complex (APC). The APC is activated by association with Cdc20 in midmitosis and Cdh1 in late mitosis and G1. Here, we show that in budding yeast the activation of APC(Cdh1) is controlled in part by destruction of the Cdh1 inhibitor Acm1. We find that Acm1 uses pseudosubstrate and other sequence motifs to bind and inhibit Cdh1, but not Cdc20. Acm1 also contains a destruction sequence that promotes its ubiquitination by APC(Cdc20), resulting in the disappearance of Acm1 in early anaphase. Later in mitosis, Acm1 destruction is also promoted by APC(Cdh1). Finally, Cdk1-dependent phosphorylation of Acm1 modulates its localization and destruction. We conclude that ubiquitination of a Cdh1 inhibitor by APC(Cdc20) helps establish the order of activation of the two APC isoforms. We also speculate that the ability of APC(Cdh1) to target its own inhibitor enhances the bistability of the late mitotic regulatory system.


Assuntos
Mitose/fisiologia , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina , Complexos Ubiquitina-Proteína Ligase/genética
3.
Nat Cell Biol ; 5(3): 249-54, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598903

RESUMO

Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit--after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Endopeptidases , Mitose , Nucléolo Celular/enzimologia , Hidrólise , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase
4.
Dev Cell ; 4(5): 727-39, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12737807

RESUMO

Disjunction of maternal and paternal centromeres during meiosis I requires crossing over between homologous chromatids, which creates chiasmata that hold homologs together. It also depends on a mechanism ensuring that maternal and paternal sister kinetochore pairs attach to oppositely oriented microtubules. Proteolytic cleavage of cohesin's Rec8 subunit by separase destroys cohesion between sister chromatid arms at anaphase I and thereby resolves chiasmata. The Spo12 and Slk19 proteins have been implicated in regulating meiosis I kinetochore orientation and/or in preventing cleavage of Rec8 at centromeres. We show here that the role of these proteins is instead to promote nucleolar segregation, including release of the Cdc14 phosphatase required for Cdk1 inactivation and disassembly of the anaphase I spindle. Separase is also required but surprisingly not its protease activity. It has two mechanistically different roles during meiosis I. Loss of the protease-independent function alone results in a second meiotic division occurring on anaphase I spindles in spo12delta and slk19delta mutants.


Assuntos
Anáfase , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Endopeptidases , Proteínas Fúngicas/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclina B , Ciclinas/metabolismo , Regulação para Baixo , Proteínas Fúngicas/genética , Hibridização in Situ Fluorescente , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Separase , Fatores de Tempo
6.
Mol Cell Biol ; 28(17): 5328-36, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591250

RESUMO

Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.


Assuntos
Segregação de Cromossomos , Ciclina B/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Replicação do DNA , Meiose , Modelos Biológicos , Mutação/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/citologia , Complexos Ubiquitina-Proteína Ligase/metabolismo
7.
J Biol Chem ; 282(27): 19710-5, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17493939

RESUMO

The anaphase-promoting complex (APC) or cyclosome is a multisubunit ubiquitin-protein ligase that ubiquitinates and thereby promotes the destruction of the mitotic cyclins and the separase inhibitor, securin. The contributions of the APC to progression through the meiotic program are not clear. To clarify the function of the APC in meiosis, we screened several yeast meiotic proteins as APC substrates in vitro. We found that the meiotic regulator Spo13 is an APC substrate that is degraded during anaphase I. Spo13 is expressed only in meiotic cells, where it has multiple functions, including the promotion of monopolar chromosome attachment in the first division. Spo13 ubiquitination by the APC depends on an LxExxxN sequence (residues 26-32) that is distinct from previously described destruction sequences of APC substrates. Mutation of one residue, leucine 26, prevented Spo13 ubiquitination by the APC in vitro and stabilized the protein through the meiotic divisions. Analysis of meiotic progression and spore viability of yeast containing the stabilized Spo13 mutant revealed no significant defects, indicating that Spo13 destruction in anaphase I is not essential for meiosis. We propose that Spo13 destruction is one of multiple mechanisms underlying the switch from monopolar to bipolar chromosome attachment between the meiotic divisions.


Assuntos
Anáfase/fisiologia , Meiose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Ubiquitina/genética , Complexos Ubiquitina-Proteína Ligase/genética
8.
Cell ; 117(4): 471-82, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15137940

RESUMO

At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topologically entangled state. Separase, concomitantly with cleaving cohesin, activates the phosphatase Cdc14. We find that Cdc14 exerts two effects on rDNA, both mediated by the condensin complex. Lengthwise condensation of rDNA shortens the chromosome XII arm sufficiently for segregation. This condensation depends on the aurora B kinase complex. Independently of condensation, Cdc14 induces condensin-dependent resolution of cohesin-independent rDNA linkage. Cdc14-dependent sister chromatid resolution at the rDNA could introduce a temporal order to chromosome segregation.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , DNA Ribossômico/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Endopeptidases/genética , Proteínas Fúngicas , Complexos Multiproteicos , Mutação/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase , Coesinas
9.
J Biol Chem ; 279(2): 1191-6, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14585836

RESUMO

Sister chromatid cohesion is resolved at anaphase onset when separase, a site-specific protease, cleaves the Scc1 subunit of the chromosomal cohesin complex that is responsible for holding sister chromatids together. This mechanism to initiate anaphase is conserved in eukaryotes from budding yeast to man. Budding yeast separase recognizes and cleaves two conserved peptide motifs within Scc1. In addition, separase cleaves a similar motif in the kinetochore and spindle protein Slk19. Separase may cleave further substrate proteins to orchestrate multiple cellular events that take place during anaphase. To investigate substrate recognition by budding yeast separase we analyzed the sequence requirements at one of the Scc1 cleavage site motifs by systematic mutagenesis. We derived a cleavage site consensus motif (not(FKRWY))(ACFHILMPVWY)(DE)X(AGSV)R/X. This motif is found in 1,139 of 5,889 predicted yeast proteins. We analyzed 28 candidate proteins containing this motif as well as 35 proteins that contain a core (DE)XXR motif. We could so far not confirm new separase substrates, but we have uncovered other forms of mitotic regulation of some of the proteins. We studied whether determinants other than the cleavage site motif mediate separase-substrate interaction. When the separase active site was occupied with a peptide inhibitor covering the cleavage site motif, separase still efficiently interacted with its substrate Scc1. This suggests that separase recognizes both a cleavage site consensus sequence as well as features outside the cleavage site.


Assuntos
Proteínas de Ciclo Celular/química , Endopeptidases/química , Saccharomycetales/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Anáfase , Sítios de Ligação , Proteínas Cromossômicas não Histona , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/química , Mitose , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares , Fosfoproteínas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Separase , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA