Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 20(5): 314, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30911159

RESUMO

In this article, the affiliation for Mohit Rana was incorrectly listed as the Institute for Biological and Medical Engineering, Department of Psychiatry, and Section of Neuroscience, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860 Hernán Briones, piso 2, Macul 782-0436, Santiago, Chile. The listed affiliation should have been the following: Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile; and the Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile. An acknowledgement to Mohit Rana's funding source was also missing. The following sentence should have been included in the acknowledgments section: M.R. is supported by a Fondecyt postdoctoral fellowship (project no. 3100648).

2.
IEEE Sens J ; 23(3): 3079-3089, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37649489

RESUMO

Early detection of Alzheimer's Disease and Related Disorders (ADRD) has been a focus of research with the hope that early intervention may improve clinical outcomes. The manifestation of motor impairment in early stages of ADRD has led to the inclusion of gait assessments including spatiotemporal parameters in clinical evaluations. This study aims to determine the effect of adding kinetic and kinematic gait features to classification of different levels of cognitive load in healthy individuals. A dual-task paradigm was used to simulate cognitive impairment in 40 healthy adults, with single-task walking trials representing normal, healthy gait. The Paced Auditory Serial Addition Task was administered at two different inter-stimulus intervals representing two levels of cognitive load in dual-task gait. We predicted that a richer dataset would improve classification accuracy relative to spatiotemporal parameters. Repeated Measures ANOVA showed significant changes in 15 different gait features across all three levels of cognitive load. We used three supervised machine learning algorithms to classify data points using a series of different gait feature sets with performance based on the area under the curve (AUC). Classification yielded 0.778 AUC across all three conditions (0.889 AUC Single vs. Dual) using kinematic and spatiotemporal features compared to 0.724 AUC using spatiotemporal features only (0.792 AUC Single vs. Dual). These data suggest that additional kinematic parameters improve classification performance. However, the benefit of measuring a wider set of parameters compared to their cost needs consideration. Further work will lead to a clinically viable ADRD detection classifier.

3.
Nat Rev Neurosci ; 18(2): 86-100, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28003656

RESUMO

Neurofeedback is a psychophysiological procedure in which online feedback of neural activation is provided to the participant for the purpose of self-regulation. Learning control over specific neural substrates has been shown to change specific behaviours. As a progenitor of brain-machine interfaces, neurofeedback has provided a novel way to investigate brain function and neuroplasticity. In this Review, we examine the mechanisms underlying neurofeedback, which have started to be uncovered. We also discuss how neurofeedback is being used in novel experimental and clinical paradigms from a multidisciplinary perspective, encompassing neuroscientific, neuroengineering and learning-science viewpoints.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Neurorretroalimentação/fisiologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Humanos , Neuroimagem/métodos , Plasticidade Neuronal/fisiologia , Autocontrole , Reabilitação do Acidente Vascular Cerebral/métodos
4.
J Neurophysiol ; 125(5): 1720-1734, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788634

RESUMO

Previous work has shown that functional magnetic resonance imaging (fMRI) activity patterns associated with individual fingers can be shifted by temporary impairment of the hand. Here, we investigated whether these neural activity patterns could be modulated endogenously and whether any behavioral changes result from this modulation. We used decoded neurofeedback in healthy individuals to encourage participants to shift the neural activity pattern in sensorimotor cortex of the middle finger toward the index finger, and the ring finger toward the little finger. We first mapped the neural activity patterns for all fingers of the right hand in an fMRI pattern localizer session. Then, in three subsequent neurofeedback sessions, participants were rewarded after middle/ring finger presses according to their activity pattern overlap during each trial. A force-sensitive keyboard was used to ensure that participants were not altering their physical finger coordination patterns. We found evidence that participants could learn to shift the activity pattern of the ring finger but not of the middle finger. Increased variability of these activity patterns during the localizer session was associated with the ability of participants to modulate them using neurofeedback. Participants also showed an increased preference for the ring finger but not for the middle finger in a postneurofeedback motor task. Our results show that neural activity and behaviors associated with the ring finger are more readily modulated than those associated with the middle finger. These results have broader implications for rehabilitation of individual finger movements, which may be limited or enhanced by individual finger plasticity after neurological injury.NEW & NOTEWORTHY It may be possible to remobilize fingers after neurological injury by altering neural activity patterns. Toward this end, we examined whether finger-related neural activity patterns could be modified in healthy individuals without physical intervention, using fMRI neurofeedback. Our findings show that greater variability of neural patterns at baseline predicted a participant's ability to successfully shift these patterns. Because neural variability is common in individuals poststroke, this illustrates a potential clinical benefit of this procedure.


Assuntos
Mapeamento Encefálico , Dedos/fisiologia , Neurorretroalimentação/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176800

RESUMO

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Assuntos
Lista de Checagem/métodos , Neurorretroalimentação/métodos , Adulto , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Revisão da Pesquisa por Pares , Projetos de Pesquisa/normas , Participação dos Interessados
6.
J Neuroeng Rehabil ; 18(1): 59, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827612

RESUMO

I (JS) am currently a faculty member at The University of Texas at Austin in Mechanical Engineering. My primary research focus is rehabilitation engineering. In May 2020, a week before her fourth birthday, our daughter suffered a severe traumatic brain injury in the early days of the coronavirus pandemic. The purpose of this article is to describe the current state of pediatric neurorehabilitation from technologically-adept parents' first-person perspectives in order to inform and motivate rehabilitation engineering researchers. We describe the medical and personal challenges faced during the aftermath of the accident, the technological approaches to her recovery that my wife (LKS) and I have examined, some of which may be considered beyond standard practice, and the lessons we have absorbed during this period regarding both the state of rehabilitation research and the clinical uptake of rehabilitation technologies. We introduce a set of questions for designers to consider as they create and evaluate new technologies for pediatric rehabilitation.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas/reabilitação , Reabilitação Neurológica/instrumentação , Reabilitação Neurológica/métodos , Criança , Feminino , Humanos , Pais , Pesquisa de Reabilitação
7.
J Neuroeng Rehabil ; 17(1): 15, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028966

RESUMO

BACKGROUND: While therapy is an important part of the recovery process, there is a lack of quantitative data detailing the "dosage" of therapy received due to the limitations on in/outpatient accessibility and mobility. Advances in wearable sensor technology have allowed us to obtain an unprecedented glimpse into joint-level kinematics in an unobtrusive manner. The objective of this observational longitudinal pilot study was to evaluate the relations between lower body joint kinematics during therapy and functional gait recovery over the first three months after stroke. METHODS: Six individuals with subacute stroke (< 1 month) were monitored for a total of 59 one-hour physical therapy sessions including gait and non-gait activities. Participants donned a heart rate monitor and an inertial motion capture system to measure full lower body joint kinematics during each therapy session. Linear mixed regression models were used to examine relations between functional gait recovery (speed) and activity features including total joint displacements, defined as amount of motion (AoM), step number, change in heart rate (∆HR), and types of tasks performed. RESULTS: All activity features including AoM, step number, types of tasks performed (all p < 0.01), and ∆HR (p < 0.05) showed strong associations with gait speed. However, AoM (R2 = 32.1%) revealed the greatest explained variance followed by step number (R2 = 14.1%), types of tasks performed (R2 = 8.0%) and ∆HR (R2 = 5.8%). These relations included both gait and non-gait tasks. Contrary to our expectations, we did not observe a greater relation of functional recovery to motion in the impaired limb (R2 = 27.8%) compared to the unimpaired limb (R2 = 32.9%). CONCLUSIONS: This proof-of-concept study shows that recording joint kinematics during gait therapy longitudinally after stroke is feasible and yields important information for the recovery process. These initial results suggest that compared to step number, more holistic outcome measures such as joint motions may be more informative and help elucidate the dosage of therapy.


Assuntos
Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral/métodos , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia/instrumentação , Projetos Piloto , Acidente Vascular Cerebral/fisiopatologia
8.
J Neuroeng Rehabil ; 17(1): 117, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843057

RESUMO

BACKGROUND: Stiff-Knee gait (SKG) after stroke is often accompanied by decreased knee flexion angle during the swing phase. The decreased knee flexion has been hypothesized to originate from excessive quadriceps activation. However, it is unclear whether hyperreflexia plays a role in this activation. The goal of this study was to establish the relationship between quadriceps hyperreflexia and knee flexion angle during walking in post-stroke SKG. METHODS: The rectus femoris (RF) H-reflex was recorded in 10 participants with post-stroke SKG and 10 healthy controls during standing and walking at the pre-swing phase. In order to attribute the pathological neuromodulation to quadriceps muscle hyperreflexia and activation, healthy individuals voluntarily increased quadriceps activity using electromyographic (EMG) feedback during standing and pre-swing upon RF H-reflex elicitation. RESULTS: We observed a negative correlation (R = - 0.92, p = 0.001) between knee flexion angle and RF H-reflex amplitude in post-stroke SKG. In contrast, H-reflex amplitude in healthy individuals in presence (R = 0.47, p = 0.23) or absence (R = - 0.17, p = 0.46) of increased RF muscle activity was not correlated with knee flexion angle. We observed a body position-dependent RF H-reflex modulation between standing and walking in healthy individuals with voluntarily increased RF activity (d = 2.86, p = 0.007), but such modulation was absent post-stroke (d = 0.73, p = 0.296). CONCLUSIONS: RF reflex modulation is impaired in post-stroke SKG. The strong correlation between RF hyperreflexia and knee flexion angle indicates a possible regulatory role of spinal reflex excitability in post-stroke SKG. Interventions targeting quadriceps hyperreflexia could help elucidate the causal role of hyperreflexia on knee joint function in post-stroke SKG.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Músculo Quadríceps/fisiopatologia , Reflexo Anormal/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Caminhada
9.
Neuroimage ; 195: 300-310, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30954707

RESUMO

The neural correlates of specific brain functions such as visual orientation tuning and individual finger movements can be revealed using multivoxel pattern analysis (MVPA) of fMRI data. Neurofeedback based on these distributed patterns of brain activity presents a unique ability for precise neuromodulation. Recent applications of this technique, known as decoded neurofeedback, have manipulated fear conditioning, visual perception, confidence judgements and facial preference. However, there has yet to be an empirical justification of the timing and data processing parameters of these experiments. Suboptimal parameter settings could impact the efficacy of neurofeedback learning and contribute to the 'non-responder' effect. The goal of this study was to investigate how design parameters of decoded neurofeedback experiments affect decoding accuracy and neurofeedback performance. Subjects participated in three fMRI sessions: two 'finger localizer' sessions to identify the fMRI patterns associated with each of the four fingers of the right hand, and one 'finger finding' neurofeedback session to assess neurofeedback performance. Using only the localizer data, we show that real-time decoding can be degraded by poor experiment timing or ROI selection. To set key parameters for the neurofeedback session, we used offline simulations of decoded neurofeedback using data from the localizer sessions to predict neurofeedback performance. We show that these predictions align with real neurofeedback performance at the group level and can also explain individual differences in neurofeedback success. Overall, this work demonstrates the usefulness of offline simulation to improve the success of real-time decoded neurofeedback experiments.


Assuntos
Mapeamento Encefálico/métodos , Aprendizado de Máquina , Neurorretroalimentação/métodos , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Projetos de Pesquisa
10.
Neuroimage ; 173: 332-340, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501553

RESUMO

Peripheral encoding of movement kinematics has been well-characterized, but there is little understanding of the relationship between movement kinematics and associated brain activation. We hypothesized that kinematics of passive movement is differentially represented in the sensorimotor network, reflecting the well-studied afferent responses to movement. A robotic forefinger manipulandum was used to induce passive kinematic stimuli and monitor interaction force in 41 healthy participants during whole-brain functional magnetic resonance imaging (fMRI). Levels of forefinger displacement amplitude and velocity were presented in flexion and extension. Increases in velocity were linearly associated with activation in contralateral primary somatosensory cortex (S1), bilateral secondary somatosensory cortex (S2), primary motor cortex, and supplementary motor area. No difference in activation was found for direction of the finger movement. Unexpectedly, S1 and S2 activation decreased nonlinearly with increasing displacement amplitude. We conclude that while straightforward relations were found with velocity, the complex neural representation of displacement amplitude suggests a more nuanced relationship between peripheral responses to kinematic stimuli and sensorimotor network activity. Here we present a novel, systematic characterization of the whole-brain response to passive movement kinematics.


Assuntos
Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Fenômenos Biomecânicos , Mapeamento Encefálico/métodos , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
11.
PLoS Comput Biol ; 13(7): e1005681, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28753639

RESUMO

Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner.


Assuntos
Hemodinâmica/fisiologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Neurorretroalimentação/fisiologia , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Neuroimagem , Córtex Visual/fisiologia , Adulto Jovem
12.
Neuroimage ; 124(Pt A): 806-812, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26419389

RESUMO

An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e. the regulating network. While the specificity of the activation during self-regulation is an important factor, no study has effectively determined the network involved in self-regulation in general. In an effort to detect regions that are responsible for the act of brain regulation, we performed a post-hoc analysis of data involving different target regions based on studies from different research groups. We included twelve suitable studies that examined nine different target regions amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis included a standard first- (single subject, extracting main paradigm) and second-level (single subject, all runs) general linear model (GLM) analysis of all participants taking into account the individual timing. Subsequently, at the third level, a random effects model GLM included all subjects of all studies, resulting in an overall mixed effects model. Since four of the twelve studies had a reduced field of view (FoV), we repeated the same analysis in a subsample of eight studies that had a well-overlapping FoV to obtain a more global picture of self-regulation. The GLM analysis revealed that the anterior insula as well as the basal ganglia, notably the striatum, were consistently active during the regulation of brain activation across the studies. The anterior insula has been implicated in interoceptive awareness of the body and cognitive control. Basal ganglia are involved in procedural learning, visuomotor integration and other higher cognitive processes including motivation. The larger FoV analysis yielded additional activations in the anterior cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the temporo-parietal area and the visual association areas including the temporo-occipital junction. In conclusion, we demonstrate that several key regions, such as the anterior insula and the basal ganglia, are consistently activated during self-regulation in real-time fMRI neurofeedback independent of the targeted region-of-interest. Our results imply that if the real-time fMRI neurofeedback studies target regions of this regulation network, such as the anterior insula, care should be given whether activation changes are related to successful regulation, or related to the regulation process per se. Furthermore, future research is needed to determine how activation within this regulation network is related to neurofeedback success.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Neurorretroalimentação/fisiologia , Mapeamento Encefálico , Humanos
13.
Brain Topogr ; 27(1): 138-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24241476

RESUMO

The amygdala is a central target of emotion regulation. It is overactive and dysregulated in affective and anxiety disorders and amygdala activity normalizes with successful therapy of the symptoms. However, a considerable percentage of patients do not reach remission within acceptable duration of treatment. The amygdala could therefore represent a promising target for real-time functional magnetic resonance imaging (rtfMRI) neurofeedback. rtfMRI neurofeedback directly improves the voluntary regulation of localized brain activity. At present, most rtfMRI neurofeedback studies have trained participants to increase activity of a target, i.e. up-regulation. However, in the case of the amygdala, down-regulation is supposedly more clinically relevant. Therefore, we developed a task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation, i.e. negative emotional faces. The activity in the functionally-defined region was used as online visual feedback in six healthy subjects instructed to minimize this signal using reality checking as emotion regulation strategy. Over a period of four training sessions, participants significantly increased down-regulation of the right amygdala compared to a passive viewing condition to control for habilitation effects. This result supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Imageamento por Ressonância Magnética , Inibição Neural , Neurorretroalimentação , Adulto , Regulação para Baixo , Expressão Facial , Estudos de Viabilidade , Feminino , Humanos , Masculino , Adulto Jovem
14.
Am J Phys Med Rehabil ; 103(4): 302-309, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063305

RESUMO

OBJECTIVE: While the design and clinical evidence base of robot-assisted gait training devices has been advancing, few studies investigate user experiences with accessing and using such devices in pediatric rehabilitation. This pilot study aims to further the understanding of barriers encountered by clinicians and caregivers when implementing a robot-assisted gait training device. DESIGN: A qualitative descriptive study was conducted at a local outpatient pediatric therapy center with a robot-assisted gait training exoskeleton. Six caregivers and six clinicians participated in semistructured interviews with brief surveys. The surveys were summarized with descriptive statistics. The interviews were analyzed using directed content analysis guided by the Consolidated Framework for Implementation Research. RESULTS: The five most mentioned Consolidated Framework for Implementation Research constructs were knowledge and beliefs, relative advantage, child attributes, complexity, and access to knowledge and information. Caregivers experienced obstacles to accessing and trialing robot-assisted gait training devices. Clinicians expressed concerns regarding the feasibility of incorporating robot-assisted gait training into their clinic and preferred lower-tech gait training techniques. CONCLUSIONS: While some aspects of access and usability may be addressed by device design and technological advancements, overcoming other barriers will require a deeper understanding of the roles of scientific evidence, personal beliefs, and current therapy workflows in the uptake of robotic interventions.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Criança , Projetos Piloto , Robótica/métodos , Marcha , Terapia por Exercício
15.
PLoS One ; 19(3): e0300338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512998

RESUMO

Operant conditioning of neural activation has been researched for decades in humans and animals. Many theories suggest two parallel learning processes, implicit and explicit. The degree to which feedback affects these processes individually remains to be fully understood and may contribute to a large percentage of non-learners. Our goal is to determine the explicit decision-making processes in response to feedback representing an operant conditioning environment. We developed a simulated operant conditioning environment based on a feedback model of spinal reflex excitability, one of the simplest forms of neural operant conditioning. We isolated the perception of the feedback signal from self-regulation of an explicit unskilled visuomotor task, enabling us to quantitatively examine feedback strategy. Our hypothesis was that feedback type, biological variability, and reward threshold affect operant conditioning performance and operant strategy. Healthy individuals (N = 41) were instructed to play a web application game using keyboard inputs to rotate a virtual knob representative of an operant strategy. The goal was to align the knob with a hidden target. Participants were asked to "down-condition" the amplitude of the virtual feedback signal, which was achieved by placing the knob as close as possible to the hidden target. We varied feedback type (knowledge of performance, knowledge of results), biological variability (low, high), and reward threshold (easy, moderate, difficult) in a factorial design. Parameters were extracted from real operant conditioning data. Our main outcomes were the feedback signal amplitude (performance) and the mean change in dial position (operant strategy). We observed that performance was modulated by variability, while operant strategy was modulated by feedback type. These results show complex relations between fundamental feedback parameters and provide the principles for optimizing neural operant conditioning for non-responders.


Assuntos
Condicionamento Operante , Aprendizagem , Animais , Humanos , Retroalimentação , Condicionamento Operante/fisiologia , Reflexo H/fisiologia , Motivação
16.
Artigo em Inglês | MEDLINE | ID: mdl-38843055

RESUMO

Visual imagery, or the mental simulation of visual information from memory, could serve as an effective control paradigm for a brain-computer interface (BCI) due to its ability to directly convey the user's intention with many natural ways of envisioning an intended action. However, multiple initial investigations into using visual imagery as a BCI control strategies have been unable to fully evaluate the capabilities of true spontaneous visual mental imagery. One major limitation in these prior works is that the target image is typically displayed immediately preceding the imagery period. This paradigm does not capture spontaneous mental imagery as would be necessary in an actual BCI application but something more akin to short-term retention in visual working memory. Results from the present study show that short-term visual imagery following the presentation of a specific target image provides a stronger, more easily classifiable neural signature in EEG than spontaneous visual imagery from long-term memory following an auditory cue for the image. We also show that short-term visual imagery and visual perception share commonalities in the most predictive electrodes and spectral features. However, visual imagery received greater influence from frontal electrodes whereas perception was mostly confined to occipital electrodes. This suggests that visual perception is primarily driven by sensory information whereas visual imagery has greater contributions from areas associated with memory and attention. This work provides the first direct comparison of short-term and long-term visual imagery tasks and provides greater insight into the feasibility of using visual imagery as a BCI control strategy.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Estudos de Viabilidade , Imaginação , Percepção Visual , Humanos , Imaginação/fisiologia , Eletroencefalografia/métodos , Masculino , Feminino , Percepção Visual/fisiologia , Adulto , Adulto Jovem , Memória de Curto Prazo/fisiologia , Estimulação Luminosa , Algoritmos , Sinais (Psicologia)
17.
Neuroimage ; 75: 176, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23466940

RESUMO

The publisher regrets due to an error in the publishing process the above articles was accidentally withdrawn and has now been published in (Neuroimage 83C December 2013 https://doi.org/10.1016/j.neuroimage.2013.05.115). The publisher would like to apologize for any inconvenience caused.

18.
Neuroimage ; 83: 817-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23791838

RESUMO

The dopaminergic system is involved in reward encoding and reinforcement learning. Dopaminergic neurons from this system in the substantia nigra/ventral tegmental area complex (SN/VTA) fire in response to unexpected reinforcing cues. The goal of this study was to investigate whether individuals can gain voluntary control of SN/VTA activity, thereby potentially enhancing dopamine release to target brain regions. Neurofeedback and mental imagery were used to self-regulate the SN/VTA. Real-time functional magnetic resonance imaging (rtfMRI) provided abstract visual feedback of the SN/VTA activity while the subject imagined rewarding scenes. Skin conductance response (SCR) was recorded as a measure of emotional arousal. To examine the effect of neurofeedback, subjects were assigned to either receiving feedback directly proportional (n=15, veridical feedback) or inversely proportional (n=17, inverted feedback) to SN/VTA activity. Both groups of subjects were able to up-regulate SN/VTA activity initially without feedback. Veridical feedback improved the ability to up-regulate SN/VTA compared to baseline while inverted feedback did not. Additional dopaminergic regions were activated in both groups. The ability to self-regulate SN/VTA was differentially correlated with SCR depending on the group, suggesting an association between emotional arousal and neurofeedback performance. These findings indicate that SN/VTA can be voluntarily activated by imagery and voluntary activation is further enhanced by neurofeedback. The findings may lead the way towards a non-invasive strategy for endogenous control of dopamine.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/fisiologia , Neurorretroalimentação/fisiologia , Adulto , Mapeamento Encefálico , Humanos , Interpretação de Imagem Assistida por Computador , Imagens, Psicoterapia , Imageamento por Ressonância Magnética , Masculino , Recompensa , Adulto Jovem
19.
Ann Biomed Eng ; 51(9): 1965-1974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37133540

RESUMO

Wearable assistive technology for the lower extremities has shown great promise towards improving gait function in people with neuromuscular injuries. But common secondary impairments, such as hypersensitive stretch reflexes or hyperreflexia, have been often neglected. Incorporation of biomechanics into the control loop could improve individualization and avoid hyperreflexia. However, adding hyperreflexia prediction to the control loop would require expensive or complex measurement of muscle fiber characteristics. In this study, we explore a clinically accessible biomechanical predictor set that can accurately predict rectus femoris (RF) reaction after knee flexion assistance in pre-swing by a powered orthosis. We examined a total of 14 gait parameters based on gait kinematic, kinetic, and simulated muscle-tendon states from 8 post-stroke individuals with Stiff-Knee gait (SKG) wearing a knee exoskeleton robot. We independently performed both parametric and non-parametric variable selection approaches using machine learning regression techniques. Both models revealed the same four kinematic variables relevant to knee and hip joint motions were sufficient to effectively predict RF hyperreflexia. These results suggest that control of knee and hip kinematics may be a more practical method of incorporating quadriceps hyperreflexia into the exoskeleton control loop than the more complex acquisition of muscle fiber properties.


Assuntos
Transtornos Neurológicos da Marcha , Acidente Vascular Cerebral , Humanos , Músculo Quadríceps , Fenômenos Biomecânicos , Reflexo Anormal , Marcha/fisiologia , Articulação do Joelho/fisiologia , Acidente Vascular Cerebral/complicações , Articulação do Quadril/fisiologia , Amplitude de Movimento Articular/fisiologia
20.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37293099

RESUMO

Operant conditioning of neural activation has been researched for decades in humans and animals. Many theories suggest two parallel learning processes, implicit and explicit. The degree to which feedback affects these processes individually remains to be fully understood and may contribute to a large percentage of non-learners. Our goal is to determine the explicit decision-making processes in response to feedback representing an operant conditioning environment. We developed a simulated operant conditioning environment based on a feedback model of spinal reflex excitability, one of the simplest forms of neural operant conditioning. We isolated the perception of the feedback signal from self-regulation of an explicit unskilled visuomotor task, enabling us to quantitatively examine feedback strategy. Our hypothesis was that feedback type, signal quality and success threshold affect operant conditioning performance and operant strategy. Healthy individuals (N = 41) were instructed to play a web application game using keyboard inputs to rotate a virtual knob representative of an operant strategy. The goal was to align the knob with a hidden target. Participants were asked to "down-condition" the amplitude of the virtual feedback signal, which was achieved by placing the knob as close as possible to the hidden target. We varied feedback type (knowledge of performance, knowledge of results), success threshold (easy, moderate, difficult), and biological variability (low, high) in a factorial design. Parameters were extracted from real operant conditioning data. Our main outcomes were the feedback signal amplitude (performance) and the mean change in dial position (operant strategy). We observed that performance was modulated by variability, while operant strategy was modulated by feedback type. These results show complex relations between fundamental feedback parameters and provide the principles for optimizing neural operant conditioning for non-responders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA