Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23395, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149880

RESUMO

Neutrophils accumulate in the inflammatory mucosa of patients with inflammatory bowel disease (IBD), and excessive release of NETs (neutrophil extracellular traps may be one of the important factors that cause IBD progression. However, the specific mechanism underlying vascular injury caused by NETs remains unclear. Immunofluorescence, ELISA, and flow cytometry were used in this study to detect the expression of NETs and DNase in the tissue and peripheral blood samples of patients with IBD. DSS mouse model was used to detect colon injury and vascular permeability. We found that NETs and DNase levels increased in the colon of patients with IBD. We found an increase in the activity of NET-related MPO released by DNase. DNase released NET-related proteins and damaged vascular endothelial cells in vitro. In DSS mouse model, the synchronous increase of DNase and NETs in the colon leads to an increase in vascular injury markers (CD44, sTM). DNase aggravated colon injury and increased vascular permeability in vivo, which was inhibited by gentamicin sulfate (GS). GS does not reduce the expression of DNase, but rather reduces the release of NET-related proteins to protect vascular endothelium by inhibiting DNase activity. MPO and histones synergistically damaged the vascular endothelium, and vascular injury can be improved by their active inhibitors. We further found that H2 O2 is an important substrate for MPO induced vascular damage. In conclusion, in IBD, DNase, and NET levels increased synchronously in the lesion area and released NET-related proteins to damage the vascular endothelium. Therefore, targeting DNase may be beneficial for the treatment of IBD.


Assuntos
Traumatismos Abdominais , Armadilhas Extracelulares , Doenças Inflamatórias Intestinais , Lesões do Sistema Vascular , Animais , Camundongos , Humanos , Desoxirribonucleases , Células Endoteliais , Modelos Animais de Doenças
2.
Ann Surg ; 277(1): 43-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781462

RESUMO

OBJECTIVE: To assess the safety and efficacy of antimicrobial peptide PL-5 (Peceleganan) spray in the treatment of wound infections. BACKGROUND: Antimicrobial peptide PL-5 spray is a novel topical antimicrobial agent. METHODS: We conducted a multicenter, open-label, randomized, controlled phase IIb clinical trial to evaluate the efficacy and safety of PL-5 spray, as compared with silver sulfadiazine, in patients with skin wound infections. The primary efficacy outcome was the clinical efficacy rate on the first day after ending the treatment (D8). The secondary efficacy outcome was the clinical efficacy rate on the fifth day posttreatment (D5), the bacteria clearance rate, and the overall efficacy rate at the mentioned 2 time points. The safety outcomes included adverse reactions and pharmacokinetic analysis posttreatment. RESULTS: A total of 220 patients from 27 hospitals in China were randomly assigned to 4 groups. On D8, the efficacy rate was 100.0%, 96.7%, 96.7% for the 1‰ PL-5, 2‰ PL-5, 4‰ PL-5 groups, respectively, as compared with 87.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). On D5, the efficacy rate was 100.0%, 93.4%, 98.3% for the 1‰ PL-5, 2‰ PL-5, 4‰ PL-5 groups, respectively, as compared with 82.5% for the control group. The efficacy rate among the 4 groups was significantly different ( P <0.05). The blood concentration of PL-5 was not detectable in pharmacokinetic analysis. No severe adverse event related to the application of PL-5 was reported. CONCLUSIONS: Antimicrobial peptide PL-5 spray is safe and effective for the treatment of skin wound infections. TRIAL REGISTRATION: ChiCTR2000033334.


Assuntos
Anti-Infecciosos Locais , Infecção dos Ferimentos , Humanos , Resultado do Tratamento , Bactérias , China , Método Duplo-Cego
3.
J Nanobiotechnology ; 21(1): 308, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649022

RESUMO

Chronic diabetic wounds are primarily caused by infection, inflammation, and angiogenesis-related disorders. An ideal approach for treating chronic diabetic wounds is by combining anti-infection strategies, immune microenvironment regulation, and angiogenesis promotion. Vascular endothelial growth factor (VEGF) can promote the proliferation and migration of vascular endothelial cells, thereby promoting angiogenesis. However, the low stability and inability to target lesions limit its application. Polymorphonuclear neutrophil-derived exosomes (PMNExo) exhibit good delivery properties and can be used for the therapeutic delivery of VEGF. Furthermore, they retain the antibacterial ability of polymorphonuclear neutrophils (PMNs). Nonetheless, low PMNExo generation impedes its therapeutic applications. In this study, we prepared exosome mimetics (EM) from PMNs using the extrusion process; as a result, exosome yield significantly improved. To increase the residence of exosomes, an extracellular matrix (ECM) hydrogel, a thermosensitive material that can function as an in situ gel in vivo, was used as an exosome carrier. The active peptides in the ECM regulated the immune microenvironment of the wound. In summary, we loaded ECM with VEGF-encapsulated activated neutrophil exosome mimetics (aPMNEM) to develop VEGF-aPMNEM-ECM hybrid hydrogel for treating chronic wounds. The hydrogel accelerates the regeneration of chronic diabetic wounds. Our study provides a prospective therapy platform involving cytokines for treating different diseases.


Assuntos
Diabetes Mellitus , Exossomos , Neutrófilos , Fator A de Crescimento do Endotélio Vascular , Hidrogéis/farmacologia , Células Endoteliais , Cicatrização , Antibacterianos/farmacologia , Matriz Extracelular
4.
J Cell Mol Med ; 26(7): 2089-2103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146909

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) to capture and kill pathogens, but excessive NET release can damage the surrounding tissues. Myeloperoxidase (MPO) and neutrophil elastase (NE) are thought to be important in promoting histone depolymerization and DNA breakage in the nucleus. However, the detailed path by which MPO and NE enter the nucleus is unknown. In the present study, we observed that delayed fusion of azurophilic granules with the nuclear membrane 15-20 min after extracellular degranulation in activated neutrophils. In a subsequent experiment, we further demonstrated that this fusion leads to MPO entry into the nucleus and promotes nuclear histone depolymerization and DNA breakage, a process called 'targeted nuclear degranulation'. This process can be effectively inhibited by dexamethasone and accompanied by the continuous low levels of MPO in the nucleus after PMA stimulation. Meanwhile, we found that 'targeted nuclear degranulation' is dependent on the CD44 translocation and subsequent redistribution of CD44 / ERM (Ezrin/Radixin/Moesin) / F-actin complexes, which guides the movement of azurophilic granules towards the nucleus. Application of ERM phosphorylation inhibitors and importin activity inhibitors significantly reduced the complexes formation and redistribution. Taken together, these findings indicate for the first time that delayed 'targeted nuclear degranulation' after neutrophil activation is a key mechanism of NET formation. CD44/ERM/F-actin complex mediates this process, which providing targets with promising prospects for the precise regulation of NET formation.


Assuntos
Armadilhas Extracelulares , Sepse , Actinas , Animais , Humanos , Receptores de Hialuronatos , Camundongos , Ativação de Neutrófilo , Neutrófilos , Peroxidase
5.
Inflamm Res ; 71(1): 81-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841450

RESUMO

BACKGROUND: Despite many advances in treatment, the prognosis of patients with sepsis still remains poor. Polymorphonuclear leukocytes (PMNs) are the first line of defense against infection. This study aimed to reveal the reason and mechanism of the production of PD-L1+ PMNs in sepsis. METHODS: Cecal ligation and perforation mouse model was established to simulate sepsis. And PMNs were treated for 4 h, 12 h with or without 100 ng/mL (IFN-γ) for further gene sequencing. PD-L1, PD-1, Ly6G, and CD3 were detected by multiplexed immunofluorescence. In addition, expression of PD-L1 and function of PMNs were assessed by flow cytometry. Serum and cell culture supernatant were measured with ELISA assays. Western blot was used to verify the JAK2/STAT1 pathway. RESULTS: Our study demonstrates that PMNs are the main immune cells with high expression of PD-L1 during sepsis, and these cells, therefore, play a critical role in immunosuppression. In vivo studies demonstrated a specific interaction between PD-L1+ PMNs and PD-1+ T cells. In vitro studies further demonstrated that IFN-γ induced the production of PD-L1+ PMNs through the JAK2/STAT1 pathway. In addition, Fedratinib, an inhibitor of Jak2, was shown to significantly reduce the expression of PD-L1 in neutrophils. CONCLUSIONS: These data demonstrate that secretion of IFN-γ by splenic T lymphocytes induces the production of PD-L1 + PMNs through the JAK2/STAT1 pathway in sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Humanos , Interferon gama/metabolismo , Camundongos , Baço/metabolismo , Linfócitos T
6.
Chin J Traumatol ; 25(6): 317-324, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35786510

RESUMO

Sepsis remains one of the leading causes of death globally, in spite of advanced developments in intensive care and better understandings of pathophysiology related to sepsis. There is no special treatment or drug available for sepsis, currently. Under normal circumstances, neutrophil is a major player in acute infection control. However, during sepsis, the migration abilities and antimicrobial functions of neutrophils are impaired, resulting in a dysregulated immune response. Recent studies have indeed demonstrated that blocking or reversing neutrophil migration and impaired antibacterial function can improve the outcomes in septic animal models. This article systemically synthesized information regarding related factors and signaling involved in the functions of neutrophils in sepsis. This review also discussed the possibility that neutrophils be used as a marker for specific diagnosis and/or prediction of the outcomes of sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Neutrófilos/fisiologia , Quimiotaxia , Quimiotaxia de Leucócito , Movimento Celular
7.
Crit Care ; 25(1): 50, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549126

RESUMO

BACKGROUND: Although the immune function of neutrophils in sepsis has been well described, the heterogeneity of neutrophils remains unclear during the process of sepsis. METHODS: In this study, we used a mouse CLP model to simulate the clinical scenario of patients with sepsis, neutrophil infiltration, abnormal distribution and dysfunction was analyzed. LPS was used to stimulate neutrophils in vitro to simulate sepsis; single-cell gene sequencing technology was used to explore the immunological typing. To explore the immunological function of immunosuppressive neutrophils, PD-L1 knockout neutrophils were cocultured with lymphocytes from wild-type mice. RESULTS: We found that neutrophils presented variant dysfunction at the late stage of sepsis, including inhibition of apoptosis, seriously damaged chemotaxis and extensive infiltration into the tissues. Single-cell RNA sequencing revealed that multiple subclusters of neutrophils were differentiated after LPS stimulation. The two-dimensional spatial distribution analysis showed that Foxp3+ T cells were much closer to Ly-6G than the CD4+ and CD8+ cells, indicating that infiltrated neutrophils may play immunomodulatory effect on surrounding T-regs. Further observations showed that LPS mediates PD-L1 over expression through p38α-MSK1/-MK2 pathway in neutrophils. The subsets of highly expressed PD-L1 exert immunosuppressive effect under direct contact mode, including inhibition of T cell activation and induction of T cell apoptosis and trans-differentiation. CONCLUSIONS: Taken together, our data identify a previously unknown immunosuppressive subset of neutrophils as inhibitory neutrophil in order to more accurately describe the phenotype and characteristics of these cells in sepsis.


Assuntos
Heterogeneidade Genética , Neutrófilos/classificação , Sepse/sangue , Animais , Modelos Animais de Doenças , Contagem de Leucócitos/métodos , Contagem de Leucócitos/estatística & dados numéricos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Reação em Cadeia da Polimerase/métodos , Sepse/genética
8.
Exp Cell Res ; 386(2): 111735, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751554

RESUMO

Activation of coagulation occurs in sepsis and contributes to the development of thrombosis. Platelet α-granule exocytosis plays an important role in septic coagulation abnormalities. The present study aimed to investigate the effects and the underlying mechanisms of exogenous carbon monoxide, carbon monoxide-releasing molecules II (CORM-2)-liberated CO, on suppressing platelet α-granule exocytosis in sepsis. It was shown that CORM-2 weakened α-granule membrane fusion with platelet plasma membrane and attenuated α-granule contents exocytosis in LPS-Induced platelet. Further studies revealed that CORM-2 suppressed the expression of integrin αIIbß3 in platelets stimulated by LPS. This was accompanied by a decrease in production and phosphorylation of PKCθ and Munc18a, SNARE complex assembly and subsequently platelet α-granule exocytosis. Taken together, we suggested that the potential mechanism of suppressive effect of CORM-2 on LPS-induced platelet SNAREs complex assembly and α-Granule Exocytosis might involve integrin αIIbß3-mediated PKCθ/Munc18a pathway activation.


Assuntos
Plaquetas/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Proteínas Munc18/genética , Compostos Organometálicos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Proteína Quinase C-theta/genética , Proteínas SNARE/genética , Plaquetas/citologia , Plaquetas/metabolismo , Monóxido de Carbono/química , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Exocitose , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Fusão de Membrana/efeitos dos fármacos , Modelos Biológicos , Proteínas Munc18/metabolismo , Compostos Organometálicos/química , Ativação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Cultura Primária de Células , Proteína Quinase C-theta/metabolismo , Proteínas SNARE/metabolismo , Sepse/genética , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais
9.
Inflamm Res ; 69(3): 321-330, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025760

RESUMO

OBJECTIVE: To reveal the systematic response of neutrophils to sepsis and to study the hub lncRNAs in sepsis. MATERIALS AND METHODS: Neutrophils taken from the femur and tibia of male C57 BL/6 mice were used in this study. And neutrophils were treated for 0 h, 0.5 h, 1 h, and 4 h with or without 1 µg/mL lipopolysaccharide (LPS) for further chip detection. In addition, cecal ligation and perforation were used to simulate sepsis. Here, we used different bioinformatics analyses, including differential expression analysis, weighted gene co-expression network analysis (WGCNA), and gene regulatory network analysis, to analyze the systemic response of neutrophils to sepsis. RESULTS: We identified nine modules and found hub lncRNAs in each module. The blue and pink modules were closely related to the inflammatory state of sepsis. Some hub lncRNAs (NONMMUT005259, KnowTID_00004196, and NR_003507) may have functions related to the inflammatory state in sepsis. CONCLUSIONS: Based on a new biological approach, our research results revealed the systemic-level response of neutrophils to sepsis and identified several hub lncRNAs with potential regulatory effects on this condition.


Assuntos
Redes Reguladoras de Genes , Neutrófilos/citologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Sepse/sangue , Sepse/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Fêmur/metabolismo , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tíbia/metabolismo
10.
Inflamm Res ; 69(1): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31758219

RESUMO

PURPOSE: Sepsis, an intractable clinical syndrome, is often accompanied by severe vascular endothelial injury and barrier dysfunction. Previous evidence has shown that the endogenous repair mechanism of damaged vascular endothelium requires the proliferation of local endothelial cells (ECs), but processes of re-endothelialization and angiogenesis after endothelial injury are also affected by bone marrow-derived endothelial progenitor cells (EPCs). EPC mobilization has been linked to the mechanism of vascular endothelial repair in various chronic diseases. However, the potential value of EPC mobilization in the treatment of sepsis has not been explored. METHODS: Literature review was done to summarize the mobilization mechanism of EPC and to describe the cytokines and treatments related to EPC mobilization. Additionally, we summarize what is known about the mechanisms of endothelial damage and repair in sepsis. RESULTS: During sepsis, many endotoxins and inflammatory factors can damage ECs, resulting in increased vascular permeability and microcirculatory disorders. EPCs can serve as a source of ECs. Increasing evidence suggests that various cytokines and medicines can induce EPC mobilization. CONCLUSION: EPC mobilization plays an important role in endothelial repair; this may guide the discovery of novel methods to treat sepsis.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Sepse/terapia , Animais , Movimento Celular , Humanos
11.
Cell Mol Life Sci ; 76(11): 2031-2042, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877336

RESUMO

Pyroptosis is a caspase-1 or caspase-4/5/11-dependent programmed cell death associated with inflammation, which is initiated by inflammasomes or cytosolic LPS in innate immunity. Sepsis is a life-threatening organ dysfunction caused by an imbalance in the body's response to infection. It is a complex interaction between the pathogen and the host's immune system. Neutrophils play the role of a double-edged sword in sepsis, and a number of studies have previously shown that regulation of neutrophils is the most crucial part of sepsis treatment. Pyroptosis is one of the important forms for neutrophils to function, which is increasingly understood as a host active immune response. There is ample evidence that neutrophil pyroptosis may play an important role in sepsis. In recent years, a breakthrough in pyroptosis research has revealed the main mechanism of pyroptosis. However, the potential value of neutrophil pyroptosis in the treatment of sepsis did not draw enough attention. A literature review was performed on the main mechanism of pyroptosis in sepsis and the potential value of neutrophils pyroptosis in sepsis, which may be suitable targets for sepsis treatment in future.


Assuntos
Infecções Bacterianas/imunologia , Caspases/imunologia , Inflamassomos/imunologia , Neutrófilos/imunologia , Piroptose/imunologia , Sepse/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Infecções Bacterianas/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Caspases/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/genética , Sepse/patologia
12.
Proc Natl Acad Sci U S A ; 114(17): 4483-4488, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396412

RESUMO

Although the neutrophil recruitment cascade during inflammation has been well described, the molecular players that halt neutrophil chemotaxis remain unclear. In this study, we found that lipopolysaccharide (LPS) was a potent stop signal for chemotactic neutrophil migration. Treatment with an antagonist of the ATP receptor (P2X1) in primary human neutrophils or knockout of the P2X1 receptor in neutrophil-like differentiated HL-60 (dHL-60) cells recovered neutrophil chemotaxis. Further observations showed that LPS-induced ATP release through connexin 43 (Cx43) hemichannels was responsible for the activation of the P2X1 receptor and the subsequent calcium influx. Increased intracellular calcium stopped neutrophil chemotaxis by activating myosin light chain (MLC) through the myosin light chain kinase (MLCK)-dependent pathway. Taken together, these data identify a previously unknown function of LPS-induced autocrine ATP signaling in inhibiting neutrophil chemotaxis by enhancing MLC phosphorylation, which provides important evidence that stoppage of neutrophil chemotaxis at infectious foci plays a key role in the defense against invading pathogens.


Assuntos
Trifosfato de Adenosina/fisiologia , Comunicação Autócrina , Quimiotaxia/fisiologia , Endotoxinas/farmacologia , Neutrófilos/fisiologia , Transdução de Sinais/fisiologia , Conexina 43/genética , Conexina 43/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HL-60 , Humanos , Lipopolissacarídeos/farmacologia , Cadeias Leves de Miosina/fisiologia , Fosforilação , Receptores Purinérgicos P2X1
13.
Inflamm Res ; 66(3): 197-207, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27695874

RESUMO

INTRODUCTION: Sepsis is a complex clinical condition that causes a high mortality rate worldwide. Numerous studies on the pathophysiology of sepsis have revealed an imbalance in the inflammatory network, thus leading to tissue damage, organ failure, and ultimately death. The impairment of neu-trophil migration is associated with the outcome of sepsis. METHODS: Literature review was performed on the roles of neutrophil recruitment and neutrophil receptors as pleiotropic regulators during sepsis. Additionally, we systematically classify neutrophil receptors with regard to the neutrophil response during sepsis and discuss the clinical implications of these receptors for the treatment of sepsis. RESULTS: Increasing evidence suggests that there is significant dysfunction in neutrophil recruitment during sepsis, characterized by the failure to migrate to the site of infection. Neutrophil receptors, as pleiotropic regulators, play important roles in the neutrophil response during sepsis. CONCLUSIONS: Neutrophil receptors play key roles in chemotactic neutrophil migration and may prove to be suitable targets in future pharmacological therapies for sepsis.


Assuntos
Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Sepse/imunologia , Animais , Quimiotaxia de Leucócito , Humanos , Infiltração de Neutrófilos , Neutrófilos/fisiologia
14.
Inflamm Res ; 66(4): 353-364, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28074216

RESUMO

Neutrophil chemotaxis plays an essential role in recruiting neutrophils to sites of inflammation. Neutrophil chemotaxis is suppressed both after exposure to lipopolysaccharide (LPS) in vitro and during clinical and experimental endotoxemia, leading to serious consequences. Adenosine (ADO) is a potent anti-inflammatory agent that acts on a variety of neutrophil functions. However, its effects on human neutrophil chemotaxis during infection have been less well characterized. In the present study, we investigated the effect of ADO and its receptor-specific antagonist and agonist on neutrophil chemotaxis in an in vitro LPS-stimulated model. The results showed that increasing the concentration of ADO effectively restored the LPS-inhibited neutrophil chemotaxis to IL-8. A similar phenomenon occurred after intervention with a selective A1 receptor agonist but not with a selective antagonist. Pre-treatment with cAMP antagonist failed to restore LPS-inhibited chemotaxis. Furthermore, protein array and western blot analysis showed that the activation of A1 receptor significantly decreased LPS-induced p38 MAPK phosphorylation. However, the surface expression of the A1 receptor in LPS-stimulated neutrophils was not significantly changed. Taken together, these data indicated that ADO restored the LPS-inhibited chemotaxis via the A1 receptor, which downregulated the phosphorylation level of p38 MAPK, making this a promising new therapeutic strategy for infectious diseases.


Assuntos
Adenosina/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Humanos , Interleucina-8/farmacologia , Lipopolissacarídeos , Neutrófilos/metabolismo , Transdução de Sinais
15.
Pak J Pharm Sci ; 28(1 Suppl): 281-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25631507

RESUMO

Sepsis is a severe systemic inflammatory response mostly caused by gram-negative bacterial infections. The rates of mortality in sepsis patients remain high. To date little is known about whether exogenous carbon monoxide can directly or indirectly inhibit or even kill gram negative bacteria. In our study, wedemonstrate a critical role of CO-releasing molecules in the suppressive effects on bacterial vitality and toxicity. We found the bacterial growth and colony forming were markedly suppressed in the presence of CORM-2 with significant cell damage, decreased or disappeared pili and flagella. In contrast, qRT-PCR showed the expression of fliA was downregulated, while dnaKandwaaQ were upregulated in E. coli+CORM-2. Subsequent in vivo experiments showed the mouse survival in the CORM-2 intervened-E.coli injectiontended to improve with 60%-100% survival rates, and colony distribution in major organs were significantly decreased with attenuated histological damage. In parallel, cytokine levels and myeloperoxidase accumulation in livers and lungs decreased significantly compared with E. coli group.These data provide the first evidence and a potential strategy that exogenous carbon monoxide can significantly suppress bacterial vitality and toxicity. This may be associated with the regulatory functions of CORM-2 on the expression of essential genes (fliA, dnaKand waaQ) in E. coli.


Assuntos
Anti-Infecciosos/farmacologia , Monóxido de Carbono/farmacologia , Escherichia coli/efeitos dos fármacos , Animais , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Glicosiltransferases/genética , Proteínas de Choque Térmico HSP70/genética , Interleucina-6/análise , Camundongos , Peroxidase/metabolismo , Fator sigma/genética , Fator de Necrose Tumoral alfa/análise
16.
Acta Pharmacol Sin ; 35(12): 1566-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399652

RESUMO

AIM: Endogenous carbon monoxide (CO) has been shown to modulate inflammation and inhibit cytokine production both in vivo and in vitro. The aim of this study was to examine whether exogenous carbon monoxide could suppress the vitality of Escherichia coli (E coli) and improve the survival rate in an E coli-induced murine sepsis model. METHODS: ICR mice were infected with E coli, and immediately injected intravenously with carbon monoxide releasing molecule-2 (CORM-2, 8 mg/kg) or inactive CORM-2 (8 mg/kg). The survival rate was monitored 6 times daily for up to 36 h. The blood samples, liver and lung tissues were collected at 6 h after the infection. Bacteria in peritoneal lavage fluid, blood and tissues were enumerated following culture. Tissue iNOS mRNA expression was detected using RT-PCR. NF-κB expression was detected with Western blotting. RESULTS: Addition of CORM-2 (200 and 400 µmol/L) into culture medium concentration-dependently suppressed the growth of E coli and decreased the colony numbers, but inactive CORM-2 had no effect. Treatment of the infected mice with CORM-2 significantly increased the survival rate to 55%, while all the infected mice treated with inactive CORM-2 died within 36 h. E coli infection caused severe pathological changes in liver and lungs, and significantly increased serum transaminases, lipopolysaccharide, TNF-α and IL-1ß levels, as well as myeloperoxidase activity, TNF-α and IL-1ß levels in the major organs. Meanwhile, E coli infection significantly increased the number of colonies and the expression of iNOS mRNA and NF-κB in the major organs. All these abnormalities were significantly attenuated by CORM-2 treatment, while inactive CORM-2 was ineffective. CONCLUSION: In addition directly suppressing E coli, CORM-2 protects the liver and lungs against E coli-induced sepsis in mice, thus improving their survival.


Assuntos
Monóxido de Carbono/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Sepse/tratamento farmacológico , Animais , Biomarcadores/sangue , Citocinas/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Mediadores da Inflamação/sangue , Injeções Intravenosas , Lipopolissacarídeos/sangue , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/metabolismo , Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Sepse/sangue , Sepse/microbiologia , Sepse/patologia , Fatores de Tempo
17.
Inflammation ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976117

RESUMO

The early diagnosis of neonatal sepsis is crucial as it remains a prevalent cause of neonatal mortality. In this study, we conducted an analysis on the clinical data and detection indicators of 22 cases with sepsis and 62 cases without sepsis among neonates. Our findings indicate that the clinical signs observed in neonates with sepsis lack specificity. In addition, the commonly used clinical inflammatory indicators (such as leukocyte count, neutrophil-to-lymphocyte ratio [NLR], C-reactive protein [CRP], procalcitonin) exhibit limited sensitivity and specificity. Furthermore, the current clinical measures lack the assessment of inflammatory factors. Therefore, in order to enhance the accuracy of early sepsis diagnosis in neonates, we have employed a novel microfluidic-based single-cell technology platform for the analysis of 32 cytokines secreted by neutrophils at the individual cell level under various toxin stimulation conditions. We have further investigated and compared the disparities in single-cell protein secretomics between umbilical cord blood neutrophils and healthy adult peripheral neutrophils within an in vitro sepsis model. Our findings indicate that in a resting state UCB neutrophils exhibited lower polyfunctionality compared with healthy adult blood neutrophils, and notable variations in cytokine secretion profiles were detected between the two groups. However, the polyfunctionality of UCB neutrophils significantly increased and surpassed that of healthy adult neutrophils when exposed to alpha-hemolysin or lipopolysaccharide. UCB neutrophils secreted a wide range of chemokines and inflammatory factors, among which GM-CSF and IL-18 were the most significant. Furthermore, we initially categorized the functional subgroups of neutrophils by considering the secretion of five primary cytokines by neutrophils (GM-CSF, IL-18, IL-8, MIP-1ß, and MIF). The current study, for the first time, examined in detail the heterogeneity of protein secretion and the functional diversity of UCB neutrophils stimulated by different antigens. Moreover, new insight into neonatal sepsis, early diagnosis, and wider clinical applications of UCB neutrophils are provided by these data.

18.
Burns ; 50(3): 653-665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185615

RESUMO

BACKGROUND: The pathophysiology of severe burn injuries in the early stages involves complex emergency responses, inflammatory reactions, immune system activation, and a significant increase in vascular permeability. Neutrophils, crucial innate immune cells, undergo rapid mobilization and intricate pathophysiological changes during this period. However, the dynamic alterations and detailed mechanisms governing their biological behavior remain unclear. Stomatin protein, an essential component of the cell membrane, stabilizes and regulates the membrane and participates in cell signal transduction. Additionally, it exhibits elevated expression in various inflammatory diseases. While Stomatin expression has been observed in the cell and granule membranes of neutrophils, its potential involvement in post-activation functional regulation requires further investigation. METHODS: Neutrophils were isolated from human peripheral blood, mouse peripheral blood, and mouse bone marrow using the magnetic bead separation method. Flow cytometry was used to assess neutrophil membrane surface markers, ROS levels, and phagocytic activity. The expression of the Stomatin gene and protein was examined using quantitative real-time polymerase chain reaction and western blotting methods, respectively. Furthermore, the enzyme-linked immunosorbent assay was used to evaluate the expression of neutrophil-derived inflammatory mediators (myeloperoxidase (MPO), neutrophil elastase (NE), and matrix metalloproteinase 9 (MMP9)) in the plasma. Images and videos of vascular leakage in mice were captured using in vivo laser confocal imaging technology, whereas in vitro confocal microscopy was used to study the localization and levels of the cytoskeleton, CD63, and Stomatin protein in neutrophils. RESULTS: This study made the following key findings: (1) Early after severe burn, neutrophil dysfunction is present in the peripheral blood characterized by significant bone marrow mobilization, excessive degranulation, and impaired release and chemotaxis of inflammatory mediators (MPO, NE, and MMP9). (2) After burn injury, expression of both the stomatin gene and protein in neutrophils was upregulated. (3) Knockout (KO) of the stomatin gene in mice partially inhibited neutrophil excessive degranulation, potentially achieved via reduced production of primary granules and weakened binding of primary granules to the cell skeleton protein F-actin. (4) In severely burned mice, injury led to notable early-stage vascular leakage and lung damage, whereas Stomatin gene KO significantly ameliorated lung injury and vascular leakage. CONCLUSIONS: Stomatin promotes neutrophil degranulation in the early stage of severe burn injury via increasing the production of primary granules and enhancing their binding to the cell skeleton protein F-actin in neutrophils. Consequently, this excessive degranulation results in aggravated vascular leakage and lung injury.


Assuntos
Queimaduras , Lesão Pulmonar , Animais , Humanos , Camundongos , Actinas/metabolismo , Queimaduras/metabolismo , Mediadores da Inflamação/análise , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Knockout , Neutrófilos
19.
Burns Trauma ; 12: tkae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903935

RESUMO

Background: Bacterial infections pose a considerable threat to skin wounds, particularly in the case of challenging-to-treat diabetic wounds. Systemic antibiotics often struggle to penetrate deep wound tissues and topically applied antibiotics may lead to sensitization, necessitating the development of novel approaches for effectively treating germs in deep wound tissues. Neutrophils, the predominant immune cells in the bloodstream, rapidly release an abundance of molecules via degranulation upon activation, which possess the ability to directly eliminate pathogens. This study was designed to develop novel neutrophil cell engineered nanovesicles (NVs) with high production and explore their bactericidal properties and application in promoting infectious wound healing. Methods: Neutrophils were isolated from peripheral blood and activated in vitro via phorbol myristate acetate (PMA) stimulation. Engineered NVs were prepared by sequentially extruding activated neutrophils followed by ultracentrifugation and were compared with neutrophil-derived exosomes in terms of morphology, size distribution and protein contents. The bactericidal effect of NVs in vitro was evaluated using the spread plate technique, LIVE/DEAD backlight bacteria assay and observation of bacterial morphology. The therapeutic effects of NVs in vivo were evaluated using wound contraction area measurements, histopathological examinations, assessments of inflammatory factors and immunochemical staining. Results: Activated neutrophils stimulated with PMA in vitro promptly release a substantial amount of bactericidal proteins. NVs are similar to exosomes in terms of morphology and particle size, but they exhibit a significantly higher enrichment of bactericidal proteins. In vitro, NVs demonstrated a significant bactericidal effect, presumably mediated by the enrichment of bactericidal proteins such as lysozyme. These NVs significantly accelerated wound healing, leading to a marked reduction in bacterial load, downregulation of inflammatory factors and enhanced collagen deposition in a full-thickness infectious skin defect model. Conclusions: We developed engineered NVs derived from activated neutrophils to serve as a novel debridement method targeting bacteria in deep tissues, ultimately promoting infectious wound healing.

20.
J Cancer ; 15(9): 2866-2879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577604

RESUMO

Objective: To investigate the role of neutrophils in colon cancer progression. Methods: Genetic data from 1,273 patients with colon cancer were procured from public databases and categorized based on genes linked to neutrophils through an unsupervised clustering approach. Through univariate Cox regression analysis, differentially expressed genes (DEGs) influencing overall survival (OS) were identified, forming the basis for establishing a prognostic risk score (PRS) system specific to colon cancer. Additionally, the correlation between PRS and patient prognosis, immune cell infiltration, and intratumoral gene mutations were analyzed. Validation of PRS as an indicator for "pan-tumor" immunotherapy was conducted using four distinct immunotherapy cohorts. Results: The research identified two distinct subtypes of colon cancer, namely Cluster A and B, with patients in Cluster B demonstrating remarkably superior prognoses over those in Cluster A. A total of 17 genes affecting OS were screened based on 109 DEGs between the two cluster for constructing the PRS system. Notably, individuals classified under the high-PRS group (PRShigh) exhibited poorer prognoses, significantly linked with immune cell infiltration, an immunosuppressive tumor microenvironment, and increased genomic mutations. Remarkably, analysis of immunotherapy cohorts indicated that patients with PRShigh exhibited enhanced clinical responses, a higher rate of progression-free events, and improved overall survival post-immunotherapy. The PRS system, developed based on tumor typing utilizing neutrophil-associated genes, exhibited a strong correlation with prognostic elements in colon cancer and emerged as a vital predictor of "pan-tumor" immunotherapy efficacy. Conclusions: PRS serves as a prognostic model for patients with colon cancer and holds the potential to act as a "pan-tumor" universal marker for assessing immunotherapy efficacy across different tumor types. The study findings lay a foundation for novel antitumor strategies centered on neutrophil-focused approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA