Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638643

RESUMO

Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-ß signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified ß-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by ß-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm's canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17ß-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17ß-estradiol in AH supports a role for estrogen signaling in IOP regulation.


Assuntos
Estrogênios/genética , Pressão Intraocular/genética , Transdução de Sinais/genética , Animais , Humor Aquoso/fisiologia , Bovinos , Linhagem Celular , Matriz Extracelular/genética , Glaucoma de Ângulo Aberto/genética , Humanos , Suínos , Malha Trabecular/fisiologia
2.
Int J Artif Organs ; 47(4): 280-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624101

RESUMO

The challenges in achieving optimal outcomes for wound healing have persisted for decades, prompting ongoing exploration of interventions and management strategies. This study focuses on assessing the potential benefits of implementing a nano-gelatin scaffold for wound healing. Using a rat skin defect model, full-thickness incisional wounds were created on each side of the thoracic-lumbar regions after anesthesia. The wounds were left un-sutured, with one side covered by a gelatin nano-fibrous membrane and the other left uncovered. Wound size changes were measured on days 1, 4, 7, and 14, and on day 14, rats were sacrificed for tissue sample excision, examined with hematoxylin and eosin, and Masson's trichrome stain. Statistical comparisons were performed. The gelatin nanofibers exhibited a smooth surface with a fiber diameter of 260 ± 40 nm and porous structures with proper interconnectivity. Throughout the 14-day experimental period, significant differences in the percentage of wound closure were observed between the groups. Histological scores were higher in the experiment group, indicating less inflammation but dense and well-aligned collagen fiber formation. A preliminary clinical trial on diabetic ulcers also demonstrated promising results. This study highlights the potential of the nano-collagen fibrous membrane to reduce inflammatory infiltration and enhance fibroblast differentiation into myofibroblasts during the early stages of cutaneous wound healing. The nano-fibrous collagen membrane emerges as a promising candidate for promoting wound healing, with considerable potential for future therapeutic applications.

3.
Mol Neurobiol ; 61(3): 1737-1752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775719

RESUMO

Oligodendrocytes form myelin sheaths and wrap axons of neurons to facilitate various crucial neurological functions. Oligodendrocyte progenitor cells (OPCs) persist in the embryonic, postnatal, and adult central nervous system (CNS). OPCs and mature oligodendrocytes are involved in a variety of biological processes such as memory, learning, and diseases. How oligodendrocytes are specified in different regions in the CNS, in particular in humans, remains obscure. We here explored oligodendrocyte development in three CNS regions, subpallium, brainstem, and spinal cord, in human fetuses from gestational week 8 (GW8) to GW12 using single-cell RNA sequencing. We detected multiple lineages of OPCs and illustrated distinct developmental trajectories of oligodendrocyte differentiation in three CNS regions. We also identified major genes, particularly transcription factors, which maintain status of OPC proliferation and promote generation of mature oligodendrocytes. Moreover, we discovered new marker genes that might be crucial for oligodendrocyte specification in humans, and detected common and distinct genes expressed in oligodendrocyte lineages in three CNS regions. Our study has demonstrated molecular heterogeneity of oligodendrocyte lineages in different CNS regions and provided references for further investigation of roles of important genes in oligodendrocyte development in humans.


Assuntos
Sistema Nervoso Central , Oligodendroglia , Adulto , Humanos , Diferenciação Celular/genética , Sistema Nervoso Central/fisiologia , Oligodendroglia/fisiologia , Bainha de Mielina/genética , Feto , Análise de Sequência de RNA
4.
EClinicalMedicine ; 67: 102387, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38314061

RESUMO

Background: We aimed to evaluate the cost-effectiveness of an artificial intelligence-(AI) based diabetic retinopathy (DR) screening system in the primary care setting for both non-Indigenous and Indigenous people living with diabetes in Australia. Methods: We performed a cost-effectiveness analysis between January 01, 2022 and August 01, 2023. A decision-analytic Markov model was constructed to simulate DR progression in a population of 1,197,818 non-Indigenous and 65,160 Indigenous Australians living with diabetes aged ≥20 years over 40 years. From a healthcare provider's perspective, we compared current practice to three primary care AI-based screening scenarios-(A) substitution of current manual grading, (B) scaling up to patient acceptance level, and (C) achieving universal screening. Study results were presented as incremental cost-effectiveness ratio (ICER), benefit-cost ratio (BCR), and net monetary benefits (NMB). A Willingness-to-pay (WTP) threshold of AU$50,000 per quality-adjusted life year (QALY) and a discount rate of 3.5% were adopted in this study. Findings: With the status quo, the non-Indigenous diabetic population was projected to develop 96,269 blindness cases, resulting in AU$13,039.6 m spending on DR screening and treatment during 2020-2060. In comparison, all three intervention scenarios were effective and cost-saving. In particular, if a universal screening program was to be implemented (Scenario C), it would prevent 38,347 blindness cases, gain 172,090 QALYs and save AU$595.8 m, leading to a BCR of 3.96 and NMB of AU$9,200 m. Similar findings were also reported in the Indigenous population. With the status quo, 3,396 Indigenous individuals would develop blindness, which would cost the health system AU$796.0 m during 2020-2060. All three intervention scenarios were cost-saving for the Indigenous population. Notably, universal AI-based DR screening (Scenario C) would prevent 1,211 blindness cases and gain 9,800 QALYs in the Indigenous population, leading to a saving of AU$19.2 m with a BCR of 1.62 and NMB of AU$509 m. Interpretation: Our findings suggest that implementing AI-based DR screening in primary care is highly effective and cost-saving in both Indigenous and non-Indigenous populations. Funding: This project received grant funding from the Australian Government: the National Critical Research Infrastructure Initiative, Medical Research Future Fund (MRFAI00035) and the NHMRC Investigator Grant (APP1175405). The contents of the published material are solely the responsibility of the Administering Institution, a participating institution or individual authors and do not reflect the views of the NHMRC. This work was supported by the Global STEM Professorship Scheme (P0046113), the Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075). The Centre for Eye Research Australia receives Operational Infrastructure Support from the Victorian State Government. W.H. is supported by the Melbourne Research Scholarship established by the University of Melbourne. The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

5.
J Clin Invest ; 116(10): 2695-706, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16906227

RESUMO

EGFR is frequently mutated and amplified in lung adenocarcinomas sensitive to EGFR inhibitors gefitinib and erlotinib. A secondary mutation, T790M, has been associated with acquired resistance but has not been shown to be sufficient to render EGFR mutant/amplified lung cancers resistant to EGFR inhibitors. We created a model for studying acquired resistance to gefitinib by prolonged exposure of a gefitinib-sensitive lung carcinoma cell line (H3255; EGFR mutated and amplified) to gefitinib in vitro. The resulting resistant cell line acquired a T790M mutation in a small fraction of the amplified alleles that was undetected by direct sequencing and identified only by a highly sensitive HPLC-based technique. In gefitinib-sensitive lung cancer cells with EGFR mutations and amplifications, exogenous introduction of EGFR T790M effectively conferred resistance to gefitinib and continued ErbB-3/PI3K/Akt signaling when in cis to an activating mutation. Moreover, continued activation of PI3K signaling by the PIK3CA oncogenic mutant, p110alpha E545K, was sufficient to abrogate gefitinib-induced apoptosis. These findings suggest that allelic dilution of biologically significant resistance mutations may go undetected by direct sequencing in cancers with amplified oncogenes and that restoration of PI3K activation via either a T790M mutation or other mechanisms can provide resistance to gefitinib.


Assuntos
Alelos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gefitinibe , Amplificação de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Interferência de RNA , Receptor ErbB-3/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Transl Med ; 3(99): 99ra86, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21900593

RESUMO

Cetuximab, an antibody directed against the epidermal growth factor receptor, is an effective clinical therapy for patients with colorectal, head and neck, and non-small cell lung cancer, particularly for those with KRAS and BRAF wild-type cancers. Treatment in all patients is limited eventually by the development of acquired resistance, but little is known about the underlying mechanism. Here, we show that activation of ERBB2 signaling in cell lines, either through ERBB2 amplification or through heregulin up-regulation, leads to persistent extracellular signal-regulated kinase 1/2 signaling and consequently to cetuximab resistance. Inhibition of ERBB2 or disruption of ERBB2/ERBB3 heterodimerization restores cetuximab sensitivity in vitro and in vivo. A subset of colorectal cancer patients who exhibit either de novo or acquired resistance to cetuximab-based therapy has ERBB2 amplification or high levels of circulating heregulin. Collectively, these findings identify two distinct resistance mechanisms, both of which promote aberrant ERBB2 signaling, that mediate cetuximab resistance. Moreover, these results suggest that ERBB2 inhibitors, in combination with cetuximab, represent a rational therapeutic strategy that should be assessed in patients with cetuximab-resistant cancers.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Animais , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cetuximab , Receptores ErbB/genética , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transplante de Neoplasias , Neoplasias/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-2/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA