Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35224614

RESUMO

Accurate identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared with traditional experimental methods that are labor-intensive and time-consuming, computational methods are more and more popular in recent years. Conventional computational methods almost simply view heterogeneous networks which integrate diverse drug-related and target-related dataset instead of fully exploring drug and target similarities. In this paper, we propose a new method, named DTIHNC, for $\mathbf{D}$rug-$\mathbf{T}$arget $\mathbf{I}$nteraction identification, which integrates $\mathbf{H}$eterogeneous $\mathbf{N}$etworks and $\mathbf{C}$ross-modal similarities calculated by relations between drugs, proteins, diseases and side effects. Firstly, the low-dimensional features of drugs, proteins, diseases and side effects are obtained from original features by a denoising autoencoder. Then, we construct a heterogeneous network across drug, protein, disease and side-effect nodes. In heterogeneous network, we exploit the heterogeneous graph attention operations to update the embedding of a node based on information in its 1-hop neighbors, and for multi-hop neighbor information, we propose random walk with restart aware graph attention to integrate more information through a larger neighborhood region. Next, we calculate cross-modal drug and protein similarities from cross-scale relations between drugs, proteins, diseases and side effects. Finally, a multiple-layer convolutional neural network deeply integrates similarity information of drugs and proteins with the embedding features obtained from heterogeneous graph attention network. Experiments have demonstrated its effectiveness and better performance than state-of-the-art methods. Datasets and a stand-alone package are provided on Github with website https://github.com/ningq669/DTIHNC.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Redes Neurais de Computação , Descoberta de Drogas , Interações Medicamentosas , Humanos , Proteínas/metabolismo
2.
J Environ Manage ; 365: 121638, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959766

RESUMO

In the sludge dewatering process, a formidable challenge arises due to the robust interactions between extracellular polymeric substances (EPS) and bound water. This study introduces a novel, synergistic conditioning method that combines iron (Fe2+)/peroxymonosulfate (PMS) and polyacrylamide (PAM) to significantly enhance sludge dewatering efficiency. The application of the Fe2+/PMS-PAM conditioning method led to a substantial reduction in specific filtration resistance (SFR) by 82.75% and capillary suction time (CST) by 80.44%, marking a considerable improvement in dewatering performance. Comprehensive analyses revealed that pre-oxidation with Fe2+/PMS in the Fe2+/PMS-PAM process effectively degraded EPS, facilitating the release of bound water. Subsequently, PAM enhanced the flocculation of fine sludge particles resulting from the advanced oxidation processes (AOPs). Furthermore, analysis based on the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated shifts in interaction energies, highlighting the breakdown of energy barriers within the sludge and a transition in surface characteristics from hydrophilic (3.79 mJ m-2) to hydrophobic (-61.86 mJ m-2). This shift promoted the spontaneous aggregation of sludge particles. The innovative use of the Flory-Huggins theory provided insights into the sludge filtration mechanism from a chemical potential perspective, linking these changes to SFR. The introduction of Fe2+/PMS-PAM conditioning disrupted the uniformity of the EPS-formed gel layer, significantly reducing the chemical potential difference between the permeate and the water in the gel layer, leading to a lower SFR and enhanced dewatering performance. This thermodynamic approach significantly enhances our understanding of sludge dewatering and conditioning. These findings represent a paradigm shift, offering innovative strategies for sludge treatment and expanding our comprehension of dewatering and conditioning techniques.

3.
J Environ Manage ; 354: 120383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382434

RESUMO

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro , Eliminação de Resíduos Líquidos/métodos , Antibacterianos , Pós , Eletrólise/métodos , Oxirredução , Peróxido de Hidrogênio
4.
Angew Chem Int Ed Engl ; 63(26): e202402669, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38637296

RESUMO

Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M=Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100 % selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.

5.
Semin Cancer Biol ; 86(Pt 2): 929-942, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375726

RESUMO

Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Lipossomos/química , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Nanotecnologia/métodos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Opt Lett ; 48(10): 2768-2771, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186761

RESUMO

As the critical device of microwave photonics and optical communication, the low-loss and high-efficiency optical phase shifter has attracted intense attention in photonic integrated circuits. However, most of their applications are restricted to a particular band. Little is known about the characteristics of broadband. In this paper, an SiN-MoS2 integrated broadband racetrack phase shifter is demonstrated. The coupling region and the structure of the racetrack resonator are elaborately designed to improve the coupling efficiency at each resonance wavelength. The ionic liquid is introduced to form a capacitor structure. Then, the effective index of the hybrid waveguide can be efficiently tuned by adjusting the bias voltage. We achieve a phase shifter with a tunable range covering all the WDM bands and even up to 1900 nm. The highest phase tuning efficiency is measured to be 72.75 pm/V at 1860 nm, and the corresponding half-wave-voltage-length product is calculated as 0.0608 V·cm.

7.
Phys Chem Chem Phys ; 25(41): 28479-28496, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846774

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally, and rapid viral evolution and the emergence of new variants pose challenges to pandemic control. During infection, the spike protein of SARS-CoV-2 interacts with the human ACE2 protein via its receptor binding domain (RBD), and it is known that engineered forms of ACE2 can compete with wild-type (WT) ACE2 for binding to inhibit infection. Here, we conducted multiple replica molecular dynamics (MRMD) simulations to study the mechanisms of the engineered ACE2 variants 3N39 and 3N94 and provide directions for optimization. Our findings reveal that engineered ACE2 is notably more efficacious in systems that show weaker binding to WT ACE2 (i.e., WT and BA.1 RBD), but also faces immune escape as the virus evolves. Moreover, by modifying residue types near the binding interface, engineered ACE2 alters the electrostatic potential distribution and reconfigures the hydrogen bonding network, which results in modified binding to the RBD. However, this structural rearrangement does not occur in all RBD variants. In addition, we identified potentially engineerable beneficial residues and potentially engineerable detrimental residues in both ACE2 and RBD. Functional conservation can thus enable the optimization of these residues and improve the binding competitiveness of engineered ACE2, which therefore provides additional immune escape prevention. Finally, we conclude that these findings have implications for understanding the mechanisms responsible for engineered ACE2 and can help us to develop engineered ACE2 proteins that show superior performance.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Humanos , Sítios de Ligação , Ligação Competitiva , Pandemias , SARS-CoV-2/genética , Ligação Proteica , Mutação
8.
Small ; 18(9): e2106443, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918481

RESUMO

Inspired by the action and healing process from living organisms, developing deployable devices using stimuli-responsive materials, or "smart" deployable devices, is desired to realize remote-controlled programmable deformation with additional in situ repair to perform multiple tasks while extending their service life in aerospace. In this work, a photoorganizable triple shape memory polymer (POTSMP) is reported, which is composed of an azobenzene-containing thermoplastic polyurethane. Upon UV and visible illumination, this POTSMP performs arbitrary programming of two temporary shapes and precise and stepwise shape recovery, exhibiting various temporary shapes adapted to different aerospace applications. On the other hand, rapid light-reconfiguration in seconds, including light-reshaping and light-welding, is achieved in response to UV irradiation, allowing in situ localized process and repair of permanent shape. Combining these photoorganizable operations, deformable devices with complex 2D/3D structures are facilely manufactured with no need of special molds. It is envisioned that this POTSMP can expand the potential of photoresponsive TSMPs in smart deployable devices.


Assuntos
Materiais Inteligentes , Polímeros/química
9.
J Environ Manage ; 311: 114859, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276558

RESUMO

Developing highly efficient and stable catalysts for peroxymonosulfate (PMS) based advanced oxidation processes (AOPs) are crucial in the field of environmental remediation. In this work, a facile encapsulated-precursor pyrolysis strategy was reported to prepare a competent PMS-activation catalyst, in which uniformly distributed Fe3O4 nanoparticles were firmly anchored on porous boron nitride (BN) nanosheets by N-doped carbon shell (NC layer). Taking advantage of strong metal-support interaction, the as-synthesized catalyst (BFA-500) could efficiently activate PMS to achieve 100% removal of 4-chlorophenol (4-CP) in 6 min, and the corresponding turnover frequency (TOF) value was 1-2 orders of magnitude higher than that of the benchmark homogeneous (Fe2+) and nanoparticle (Fe0 and Fe3O4) catalysts. Moreover, the well protected encapsulated structure of BFA-500 ensured the remarkable stability that could effectively resist the interference of complex water environment, including initial pH value, various inorganic ions and actual water, and its catalytic activity remained almost unchanged in 5 use-regeneration cycles. More importantly, the generation of O2•- and 1O2 radicals for the 4-CP removal in BFA-500/PMS system was ascribed to Fe3O4 boosted C-N sites containing pyridinic N, where electrons transferred from the embedded Fe3O4 nanoparticles to C-N sites to secure the PMS dissociation into reactive radicals. Overall, this work provided a promising way to design desired PMS-activation catalyst toward wastewater purification.

10.
Medicina (Kaunas) ; 59(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36676646

RESUMO

Background and Objectives: The clinical prognosis and survival prediction of glioma based on gene signatures derived from heterogeneous tumor cells are unsatisfactory. This study aimed to construct an immune gene-related prognostic score model to predict the prognosis of glioma and identify patients who may benefit from immunotherapy. Methods: 23 immune-related genes (IRGs) associated with glioma prognosis were identified through weighted gene co-expression network analysis (WGCNA) and Univariate Cox regression analysis based on large-scale RNA-seq data. Eight IRGs were retained as candidate predictors and formed an immune gene-related prognostic score (IGRPS) by multifactorial Cox regression analysis. The potential efficacy of immune checkpoint blockade (ICB) therapy of different subgroups was compared by The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We further adopted a series of bioinformatic methods to characterize the differences in clinicopathological features and the immune microenvironment between the different risk groups. Finally, a nomogram integrating IGRPS and clinicopathological characteristics was built to accurately predict the prognosis of glioma. Results: Patients in the low-risk group had a better prognosis than those in the high-risk group. Patients in the high-risk group showed higher TIDE scores and poorer responses to ICB therapy, while patients in the low-risk group may benefit more from ICB therapy. The distribution of age and tumor grade between the two subgroups was significantly different. Patients with low IGRPS harbor a high proportion of natural killer cells and are sensitive to ICB treatment. While patients with high IGRPS display relatively poor prognosis, a higher expression level of DNA mismatch repair genes, high infiltrating of immunosuppressive cells, and poor ICB therapeutic outcomes. Conclusions: We demonstrated that the IGRPS model can independently predict the clinical prognosis as well as the ICB therapy responses of glioma patients, thus having important implications on the design of immune-based therapeutic strategies.


Assuntos
Glioma , Imunoterapia , Humanos , Prognóstico , Glioma/genética , Glioma/terapia , Algoritmos , Biologia Computacional , Microambiente Tumoral/genética
11.
Small ; 17(44): e2103700, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546008

RESUMO

Liquid crystal elastomer (LCE) fibers are capable of large and reversible deformations, making them an ideal artificial muscle. However, limited to stimulating source and structural design, current LCE fibers have not yet achieved both large contraction ratio and fast contraction rate to perform the intense motion. In this work, electrothermal-responsive liquid metal (LM) containing LCE (LM-LCE) fibers is reported. By introducing flexible liquid metal, LM-LCE fibers retain deformability with a large contraction ratio similar to that of pure LCE fibers and are endowed with electrical responsiveness. Applying precisely controlled electrical stimulation, the contraction ratio and rate of LM-LCE fibers can be programmed by adjusting voltage value and pulse time. Under electrical stimulation at 1.25 V cm-1 , 0.1 s, LM-LCE fibers can produce over 40% contraction ratio at an ultrafast contraction rate of up to 280% s-1 . Furthermore, LM-LCE fibers mimic human triceps muscle and can conduct precise ball shooting. LM-LCE fibers with excellent contraction ratio and rate extend their functionality as artificial muscles to perform intense movements and are expected to enrich the challenging applications of soft robots.


Assuntos
Cristais Líquidos , Robótica , Elastômeros , Eletricidade , Humanos , Músculos
12.
Arch Toxicol ; 95(4): 1489-1502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33543323

RESUMO

Ochratoxin A (OTA), a prevalent nephrotoxic mycotoxin contaminant in food and feedstuff, has been reported to induce renal injury. To disclose the nephrotoxicity of continuous administration of OTA and to investigate potential mechanisms related to pyroptosis, male C57BL/6 mice were intraperitoneally injected with 1.0 and 2.0 mg/kg B.W. OTA every other day for 14 days. At 2.0 mg/kg B.W. OTA administration significantly increased histological injury and renal fibrosis molecules (α-SMA, Vimentin, TGF-ß) and activated the NOD-like receptor protein 3 (NLRP3) inflammasome and induced pyroptosis compared with control. In the in vitro tests, Madin-Darby canine kidney (MDCK) epithelial cells were exposed to 0-4.0 µg/ml OTA for 24 h in serum-free medium. Data showed that OTA dose-dependently affected cell viability and significantly up-regulated renal fibrosis genes (α-SMA, Vimentin, TGF-ß). 2.0 µg/ml OTA significantly induced NLRP3 inflammasome activation and caspase-1-dependent pyroptosis, increasing the expression and secretion of pro-inflammatory cytokines (IL-6, TNF-α) and pyroptosis-related genes (GSDMD, IL-1ß, IL-18) in MDCK cells. These outcomes were significantly abrogated after inhibiting NLRP3 activation with inhibitor MCC950 and silencing NLRP3 with small interfering RNA (siRNA). Furthermore, knockdown of caspase-1 also ameliorated OTA-induced renal fibrosis via the inhibition of pyroptosis. Collectively, the chosen doses of OTA-triggered nephrotoxicity through NLRP3 inflammasome activation and caspase-1-dependent pyroptosis both in vitro and in vivo.


Assuntos
Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ocratoxinas/toxicidade , Piroptose/efeitos dos fármacos , Animais , Caspase 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Cães , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inflamassomos/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ocratoxinas/administração & dosagem
13.
Sensors (Basel) ; 21(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34695960

RESUMO

Hand pose estimation from RGB images has always been a difficult task, owing to the incompleteness of the depth information. Moon et al. improved the accuracy of hand pose estimation by using a new network, InterNet, through their unique design. Still, the network still has potential for improvement. Based on the architecture of MobileNet v3 and MoGA, we redesigned a feature extractor that introduced the latest achievements in the field of computer vision, such as the ACON activation function and the new attention mechanism module, etc. Using these modules effectively with our network, architecture can better extract global features from an RGB image of the hand, leading to a greater performance improvement compared to InterNet and other similar networks.


Assuntos
Mãos , Internet
14.
J Cell Sci ; 131(3)2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29361524

RESUMO

The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are ß-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1-Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteólise , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Estabilidade Proteica
15.
Langmuir ; 36(24): 6611-6625, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32449856

RESUMO

Photoresponsive materials offer local, temporal, and remote control over their chemical or physical properties under external stimuli, giving new tools for interfacial regulation. Among all, photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs) have received increasing attention because they can be processed into various micro/nanostructures and have the potential to reversibly tune the interfacial properties through chemical and/or morphological variation by light, providing effective dynamic interface regulation. In this feature article, we highlight the milestones in the dynamic regulation of different interfacial properties through micro/nanostructures made of photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs). We describe the preparation of different azo-LCP micro/nanostructures from the aspects of materials and processing techniques and reveal the importance of mesogen orientation toward dynamic interfacial regulation. By introducing our recently developed linear azo-LCP (azo-LLCP) with good mechanical and photoresponsive performances, we discuss the challenge and opportunity with respect to the dynamic light regulation of two- and three-dimensional (2D/3D) micro/nanostructures to tune their related interfacial properties. We have also given our expectation toward exploring photodeformable micro/nanostructures for advanced applications such as in microfluidics, biosensors, and nanotherapeutics.

16.
Crit Care ; 24(1): 468, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723362

RESUMO

BACKGROUND: Cardiac injury is now a common complication of coronavirus disease (COVID-19), but it remains unclear whether cardiac injury-related biomarkers can be independent predictors of mortality and severe disease development or intensive care unit (ICU) admission. METHODS: Two investigators searched the PubMed, EMBASE, Cochrane Library, MEDLINE, Chinese National Knowledge Infrastructure (CNKI), Wanfang, MedRxiv, and ChinaXiv databases for articles published through March 30, 2020. Retrospective studies assessing the relationship between the prognosis of COVID-19 patients and levels of troponin I (TnI) and other cardiac injury biomarkers (creatine kinase [CK], CK myocardial band [CK-MB], lactate dehydrogenase [LDH], and interleukin-6 [IL-6]) were included. The data were extracted independently by two investigators. RESULTS: The analysis included 23 studies with 4631 total individuals. The proportions of severe disease, ICU admission, or death among patients with non-elevated TnI (or troponin T [TnT]), and those with elevated TnI (or TnT) were 12.0% and 64.5%, 11.8% and 56.0%, and 8.2% and. 59.3%, respectively. Patients with elevated TnI levels had significantly higher risks of severe disease, ICU admission, and death (RR 5.57, 95% CI 3.04 to 10.22, P < 0.001; RR 6.20, 95% CI 2.52 to 15.29, P < 0.001; RR 5.64, 95% CI 2.69 to 11.83, P < 0.001). Patients with an elevated CK level were at significantly increased risk of severe disease or ICU admission (RR 1.98, 95% CI 1.50 to 2.61, P < 0.001). Patients with elevated CK-MB levels were at a higher risk of developing severe disease or requiring ICU admission (RR 3.24, 95% CI 1.66 to 6.34, P = 0.001). Patients with newly occurring arrhythmias were at higher risk of developing severe disease or requiring ICU admission (RR 13.09, 95% CI 7.00 to 24.47, P < 0.001). An elevated IL-6 level was associated with a higher risk of developing severe disease, requiring ICU admission, or death. CONCLUSIONS: COVID-19 patients with elevated TnI levels are at significantly higher risk of severe disease, ICU admission, and death. Elevated CK, CK-MB, LDH, and IL-6 levels and emerging arrhythmia are associated with the development of severe disease and need for ICU admission, and the mortality is significantly higher in patients with elevated LDH and IL-6 levels.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/mortalidade , Traumatismos Cardíacos/etiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Biomarcadores/sangue , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/terapia , Traumatismos Cardíacos/sangue , Hospitalização/estatística & dados numéricos , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/terapia , Valor Preditivo dos Testes , Medição de Risco , Índice de Gravidade de Doença , Troponina I/sangue
17.
Chemistry ; 21(39): 13539-43, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26251196

RESUMO

A reversible wetting/dewetting procedure is reported for an open-cage fullerene with an 18-membered orifice. In a homogeneous mixture of H2O/EtOH/CHCl3, water was encapsulated into the cavity of the open-cage compound quantitatively at 80 °C. Addition of aqueous hydrogen fluoride into the water-encapsulated complex removed the encapsulated water completely at room temperature. H-bonding between the trapped water and fluoride is shown to play a key role for the water release process.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38771681

RESUMO

Electromyographic (EMG) signals have gained popularity for controlling prostheses and exoskeletons, particularly in the field of upper limbs for stroke patients. However, there is a lack of research in the lower limb area, and standardized open-source datasets of lower limb EMG signals, especially recording data of Asian race features, are scarce. Additionally, deep learning algorithms are rarely used for human motion intention recognition based on EMG, especially in the lower limb area. In response to these gaps, we present an open-source benchmark dataset of lower limb EMG with Asian race characteristics and large data volume, the JJ dataset, which includes approximately 13,350 clean EMG segments of 10 gait phases from 15 people. This is the first dataset of its kind to include the nine main muscles of human gait when walking. We used the processed time-domain signal as input and adjusted ResNet-18 as the classification tool. Our research explores and compares multiple key issues in this area, including the comparison of sliding time window method and other preprocessing methods, comparison of time-domain and frequency-domain signal processing effects, cross-subject motion recognition accuracy, and the possibility of using thigh and calf muscles in amputees. Our experiments demonstrate that the adjusted ResNet can achieve significant classification accuracy, with an average accuracy rate of 95.34% for human gait phases. Our research provides a valuable resource for future studies in this area and demonstrates the potential for ResNet as a robust and effective method for lower limb human motion intention pattern recognition.


Assuntos
Algoritmos , Aprendizado Profundo , Eletromiografia , Marcha , Extremidade Inferior , Humanos , Eletromiografia/métodos , Masculino , Adulto , Marcha/fisiologia , Feminino , Músculo Esquelético/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem , Movimento/fisiologia , Caminhada/fisiologia , Redes Neurais de Computação , Intenção
19.
Materials (Basel) ; 17(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673172

RESUMO

Resin mineral composite (RMC) is a new material with several times the damping properties of gray cast iron and great corrosion resistance. Due to its overall brittleness, sawing with a diamond band saw would be a suitable method. In this research, sawing experiments are carried out to study the sawing force characteristics of the material and its surface morphology during the processing. The results show that the feed force level is in the range of 3.5~5.5 N and the tangential force level is relatively low. The distribution of resin mineral components does not have a significant impact on the average sawing force but increases the fluctuation of the lateral force signal. The maximum fluctuation volume is 94.86% higher than other areas. Uneven lateral force, generated when diamond particles pass through the resin-mineral interface, is one of the causes of fluctuations. The machined surface of RMC has uniform strip scratches and a small number of pits. Maintaining a constant ratio of sawing speed to feed speed can result in approximately the same machined surface. A step structure with a height of about 10 µm appears at the interface of resin minerals. As a processing defect, it may affect the performance of RMC components in some aspects, which need a further precision machining processing.

20.
Sci Rep ; 14(1): 14396, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909104

RESUMO

Currently, there is a lack of relevant research on the efficacy difference between SHD combined with IBG and PVIBGT in the treatment of osteonecrosis of the femoral head(ONFH). Firstly, this study intends to compare the effectiveness of surgical hip dislocation combined with impacting bone grafts (SHD-IBG) and pedicled vascularised iliac bone graft transfer (PVIBGT) in treating ONFH. And the study investigates patients who suffered from hip preservation failures from both groups to better comprehend failure reasons. 30 patients (34 hips) with ARCO stage IIIA femoral head necrosis were selected between January 2012 and July 2022. They were divided into group A(SHD-IBG) and group B (PVIBGT) according to different surgical methods. Firstly, compared the 1-year effect between SHD-IBG and PVIBGT at 1 year postoperatively; Secondly, assessed the medium and long-term efficacy of SHD-IBG hip preservation treatment; Lastly, based on study of the femoral head removed from patients with hip preservation failure in the two groups, the reasons for the failure of hip preservation were comprehensively analyzed in the two groups. Group A: 11 males (13 hips), 4 females (4 hips);Group B: 9 males (11 hips), 6 females (6 hips).Firstly, the average Harris scores of the two groups at 1 year after surgery: preoperative: 70.7, 1 year after surgery: 78.9 in group A; preoperative: 69.5, 1 year after surgery: 81.5 in group B. The differences were statistically significant (P < 0.05).Compared to the preoperative period, quantitative analysis by DCE-MRI showed an increase in perfusion in the necroticarea and an improvement in hyperperfusion in the repair-responsive area one year after the surgery. Secondly, in group A, the hip preservation rate was 88.2% at 2.5-11 (average of 77 months) years of follow-up, and the mean Harris score at the last follow-up was 73.2.Semi-quantitative analysis of postoperative DCE-MRI showed that the perfusion curves of necrotic and repaired areas were similar to those of the normal area. This suggests the instability within the femoral head had been effectively improved, and the perfusion had partially recovered. Thirdly, according to Micro-CT and pathologica studies of patients with hip preservation failure in these two groups, all these patients' femoral head was significantly collapsed and deformed. Their trabeculae was thin and partially disorganized, with fractures in the subchondral bone and separation of the cartilage from the subchondral bone. The necrotic areas had sparse trabeculae, disorganized arrangement, loss of continuity, and disappearance of cells in the trabecular traps. The necrotic area was covered with fibrous tissue, and partial restoration was observed in the repair area. Mechanical finite element analysis showed that the maximum equivalent force was observed in the weight- bearing area and the cortical bone surrounding the shaft of femurand. The result of DCE-MRI showed that the repair reaction area exhibited abnormal hyperperfusion. In this study, the efficacy of SHD-IBG and PVIBGT was compared at 1 year after operation, and the long-term follow-up of SHD-IBG was 2.5-11 (mean 77 months) years, combined with DCE-MRI results, we found that the short-term effect of PVIBGT was more significant than that of SHD-IBG. SHD-IBG can achieve satisfactory hip preservation in the medium and long term follow-up.


Assuntos
Transplante Ósseo , Necrose da Cabeça do Fêmur , Humanos , Feminino , Masculino , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/cirurgia , Necrose da Cabeça do Fêmur/patologia , Adulto , Pessoa de Meia-Idade , Transplante Ósseo/métodos , Resultado do Tratamento , Ílio/diagnóstico por imagem , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Cabeça do Fêmur/cirurgia , Luxação do Quadril/diagnóstico por imagem , Luxação do Quadril/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA