Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 37(8): 3495-3507, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37125528

RESUMO

Effective amelioration of ischemia/reperfusion (I/R)-induced intestinal injury and revealing its mechanisms remain the challenges in both preclinic and clinic. Potential mechanisms of naringin in ameliorating I/R-induced intestinal injury remain unknown. Based on pre-experiments, I/R-injured rat intestine in vivo and hypoxia-reoxygenation (H/R)-injured IEC-6 cells in vitro were used to verify that naringin-alleviated I/R-induced intestinal injury was mediated via deactivating cGAS-STING signaling pathway. Naringin improved intestinal damage using hematoxylin and eosin staining and decreased alanine aminotransferase and aspartate aminotransferase contents in plasma. Naringin decreased inflammation characterized by reducing IL-6, IL-1ß, TNF-α, and IFN-ß contents in both plasma and IEC-6 cells. Naringin mitigated oxidative stress via recovering superoxide dismutase, glutathione, and malondialdehyde levels in the I/R-injured intestine. Naringin reduced the expression of apoptotic proteins, including Bax, caspase-3, and Bcl-2, and reduced terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling-positive cells both in vivo and in vitro, and decreased Hoechst 33342 signals in vitro. cGAS, STING, p-TBK1, p-IRF3, and NF-κB expressions were up-regulated both in vivo and in vitro respectively and the up-regulated indexes were reversed by naringin. Transfection of cGAS-siRNA and cGAS-cDNA significantly down-regulated and up-regulated cGAS-STING signaling-related protein expressions, respectively, and partially weakened naringin-induced amelioration on these indexes, suggesting that deactivation of cGAS-STING signaling is the crucial target for naringin-induced amelioration on I/R-injured intestine.


Assuntos
Intestinos , Traumatismo por Reperfusão , Ratos , Animais , Transdução de Sinais , Inflamação/tratamento farmacológico , Nucleotidiltransferases/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose
2.
Phytother Res ; 36(11): 4244-4262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35820659

RESUMO

Vancomycin (VCM)'s nephrotoxicity limits its application and therapeutic efficiency. The aim of this study was to determine the protective effect of rhein against VCM-induced nephrotoxicity (VIN). VIN models were established in rats and NRK-52E cells. Rhein up-regulated the expressions of renal organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2), mammal multidrug and toxin extrusion proteins 1 (Mate 1) and P-glycoprotein (P-gp) to facilitate the efflux of plasma creatinine, blood urea nitrogen (BUN), and plasma indoxyl sulfate. Rhein increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate the expression of Mrp2, P-gp, and Mate 1. The increased level of superoxide dismutase (SOD), decreased level of malondialdehyde (MDA) and reduced number of apoptosis cells were observed after treatment of rhein. Rhein decreased the number of apoptosis cells as well as increased the expression of B-cell lymphoma-2 (Bcl-2) and decreased expressions of Bcl-2-like protein 4 (Bax). ML385, as a typical inhibitor of Nrf2, reversed the protective effects of rhein in cells. Rhein oriented itself in the site of Keap1, inhibiting the Keap1-Nrf2 interaction. Rhein ameliorated VIN mainly through regulating the expressions of renal transporters and acting on Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Vancomicina , Ratos , Animais , Vancomicina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo , Mamíferos/metabolismo
3.
Phytother Res ; 36(2): 899-913, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35041255

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease, has received wide attention worldwide. However, there is no approved effective drug for NAFLD treatment. In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, Western blot, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to further elucidate the mechanism of isoliquiritigenin (ISL) against NAFLD. The results showed that ISL significantly reduced the liver-to-body weight ratios and biochemical index. And the staining results showed that ISL remarkedly ameliorated liver histopathological changes of NAFLD. Furthermore, ISL significantly increased the levels of PPARα, CPT1α, and ACADS, which were involved in lipid metabolism, and inhibited the ROS, TNF-α, IL-1ß, and IL-6 expression by activating PGC-1α. Bioinformatics and luciferase assay analysis confirmed that miR-138-5p might bind to PGC-1α mRNA in NAFLD. Importantly, the expression of miR-138-5p was increased in the NAFLD, which was significantly decreased by ISL. In addition, the miR-138-5p inhibitor also promoted lipid metabolism and inhibited inflammatory response in NAFLD via PGC-1α activation. The above results demonstrate that ISL alleviates NAFLD through modulating miR-138-5p/PGC-1α-mediated lipid metabolism and inflammatory reaction in vivo and in vitro.


Assuntos
Chalconas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Chalconas/farmacologia , Regulação para Baixo , Humanos , Fígado , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Phytother Res ; 35(3): 1658-1668, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141989

RESUMO

Puerarin is an isoflavone isolated from Pueraria lobata (Willd.) Ohwi. In the present study, reversal effect and underlying mechanisms of puerarin on multidrug resistance (MDR) were investigated in K562/ADR cells. K562/ADR cells exhibited adriamycin (ADR) resistance and higher levels of MDR1 expression compared with K562 cells. Puerarin enhanced the chemosensitivity of K562/ADR cells and increased the ADR accumulation in K562/ADR cells. The expression levels of MDR1 were down-regulated by puerarin in K562/ADR cells. Luciferase reporter assay further demonstrated the inhibitory effect of puerarin on TNF-α-induced NF-κB activation. The phosphorylation of IκB-α was significantly suppressed by puerarin. In silico docking analyses suggested that puerarin well matched with the active sites of IκB-α. Moreover, a large number of autophagosomes were found in the cytoplasm of K562/ADR cells after puerarin treatment. The significant increase in LC3-II and beclin-1 was also observed, indicating autophagy induction by puerarin in K562/ADR cells. Puerarin induced cell cycle arrest and apoptosis in K562/ADR cells. Finally, puerarin inhibited phosphorylation of Akt and JNK. In conclusion, puerarin-sensitized K562/ADR cells by downregulating MDR1 expression via inhibition of NF-κB pathway and autophagy induction via Akt inhibition.


Assuntos
Autofagia/efeitos dos fármacos , Isoflavonas/uso terapêutico , Células K562/metabolismo , NF-kappa B/metabolismo , Vasodilatadores/uso terapêutico , Humanos , Isoflavonas/farmacologia , Transfecção , Vasodilatadores/farmacologia
5.
J Cell Physiol ; 235(4): 3309-3319, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31587272

RESUMO

The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K-AKT-mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K-AKT-mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.


Assuntos
Antraquinonas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transportadores de Ânions Orgânicos/genética , Pemetrexede/farmacologia , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
6.
Langmuir ; 36(32): 9443-9448, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32693594

RESUMO

The popularity of humidity sensing for respiratory analysis of patients is gradually increasing because of its portability and cost-effectiveness. However, current flexible humidity sensors are mainly made of polymer films, whose poor hygroscopicity and breathability reduce their sensitivity and comfort. In this study, a highly sensitive humidity sensor was developed using non-woven fabric (NWF) coated with graphene oxide (GO). Bovine serum albumin was used to improve the adsorption of GO onto the NWF, and its effect on sensitivity was investigated by adjusting its concentration. High-humidity sensitivity was experimentally validated by testing different relative humidity levels, and its fast response and excellent feasibility under diverse breathing conditions were verified by successful monitoring of fast and deep breathing, differentiating nose and mouth breathing, and even identifying simple spoken words. This study developed a breathable and skin-friendly humidity sensor based on GO/NWF, which is a promising device for human healthcare.

7.
Acta Pharmacol Sin ; 41(9): 1208-1222, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32238887

RESUMO

Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg-1 · d-1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1ß, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKß, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 µmol · L-1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.


Assuntos
Acroleína/análogos & derivados , Intestinos/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Fator de Transcrição RelA/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acroleína/uso terapêutico , Animais , Linhagem Celular , Inflamação/prevenção & controle , Intestinos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Isquemia Mesentérica/complicações , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/epidemiologia
8.
Phytother Res ; 34(11): 2998-3010, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32468621

RESUMO

Imipenem (Imp) is a widely used broad-spectrum antibiotic. However, renal adverse effects limit its clinical application. We previously reported that organic anion transporters (OATs) facilitated the renal transport of Imp and contributed its nephrotoxicity. Natural flavonoids exhibited renal protective effect. Here, we aimed to develop potent OAT inhibitors from traditional Chinese medicines (TCMs) and to evaluate its protective effect against Imp-induced nephrotoxicity. Among 50 TCMs, Tribuli Fructus, Platycladi Cacumen, and Lycopi Herba exhibited potent inhibition on OAT1/3. After screening their main components, Apigenin strongly inhibited Imp uptake by OAT1/3-HEK293 cells with IC50 values of 1.98 ± 0.36 µM (OAT1) and 2.29 ± 0.88 µM (OAT3). Moreover, Imp exhibited OAT1/3-dependent cytotoxicity, which was alleviated by Apigenin. Furthermore, Apigenin ameliorated Imp-induced nephrotoxicity in rabbits, and reduced the renal secretion of Imp. Apigenin inhibited intracellular accumulation of Imp and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells (rPTCs). Apigenin, a flavone widely distributed in TCMs, was a potent OAT1/3 inhibitor. Through OAT inhibition, at least in part, Apigenin decreased the renal exposure of Imp and consequently protected against the nephrotoxicity of Imp. Apigenin can be used as a promising agent to reduce the renal adverse reaction of Imp in clinic.


Assuntos
Apigenina/uso terapêutico , Imipenem/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Transportadores de Ânions Orgânicos/uso terapêutico , Animais , Apigenina/farmacologia , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Coelhos , Transfecção
9.
J Cell Physiol ; 234(4): 3685-3696, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171603

RESUMO

Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by suppressing P-glycoprotein (P-gp) and soluble resistance-related calcium-binding protein (SORCIN) independently. To reverse MDR more effectively, a new strategy was raised, that is, circumventing MDR by the coadministration of DMY and ondansetron (OND), a common antiemetic drug, during cancer chemotherapy. Meanwhile, the interior relation between P-gp and SORCIN was also revealed. The combination of DMY and OND strongly enhanced antiproliferative efficiency of adriamycin (ADR) because of the increasing accumulation of ADR in K562/ADR-resistant cell line. DMY could downregulate the expression of SORCIN and P-gp via the ERK/Akt pathways, whereas OND could not. In addition, it was proved that SORCIN suppressed ERK and Akt to inhibit P-gp by the silence of SORCIN, however, not vice versa. Finally, the combination of DMY, OND, and ADR led to G2/M cell cycle arrest and apoptosis via resuming P53 function and restraining relevant proteins expression. These fundamental findings provided a promising approach for further treatment of MDR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Flavonóis/farmacologia , Leucemia/tratamento farmacológico , Ondansetron/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Regulação para Baixo , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
J Cell Physiol ; 233(4): 3066-3079, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28681913

RESUMO

Recently, a new target Ca2+ -binding protein SORCIN was reported to participate in multidrug resistance (MDR) in cancer. Here we aim to investigate whether dihydromyricetin (DMY), a dihydroflavonol compound with anti-inflamatory, anti-oxidant, anti-bacterial and anti-tumor actions, reverses MDR in MCF-7/ADR and K562/ADR and to elucidate its potential molecular mechanism. DMY enhanced cytotoxicity of adriamycin (ADR) by downregulating MDR1 mRNA and P-gp expression through MAPK/ERK pathway and also inhibiting the function of P-gp significantly. Meanwhile, DMY decreased mRNA and protein expression of SORCIN, which resulted in elevating intracellular free Ca2+ . Finally, we investigated co-administration ADR with DMY remarkably increased ADR-induced apoptosis. Further study showed DMY elevated ROS levels and caspase-12 protein expression, which signal apoptosis in endoplasmic reticulum. At the same time, proteins related to mitochondrial apoptosis were also changed such as Bcl-2, Bax, caspase-3, caspase-9, and PARP. Finally, nude mice model also demonstrated that DMY strengthened anti-tumor activity of ADR in vivo. In conclusion, DMY reverses MDR by downregulating P-gp, SORCIN expression and increasing free Ca2+ , as well as, inducing apoptosis in MCF-7/ADR and K562/ADR. These fundamental findings provide evidence for further clinical research in application of DMY as an assistant agent in the treatment of cancer.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Doxorrubicina/farmacologia , Flavonóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Concentração Inibidora 50 , Células K562 , Células MCF-7 , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodamina 123/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Physiol Biochem ; 51(4): 1616-1631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497065

RESUMO

BACKGROUND/AIMS: The emergence of multidrug resistance (MDR) caused by P-glycoprotein (P-gp) overexpression is a serious obstacle to the treatment of chronic myelocytic leukemia. In recent years, some clinical trials have shown that nelfinavir (NFV), a traditional anti-HIV drug, has anti-cancer effects. Some researchers have also shown NFV might be a potential P-gp inhibitor. This study is aimed at investigating whether nelfinavir can act as an MDR-reversal drug and to clarify its molecular mechanism as well. METHODS: K562 and K562/ADR cell lines were applied in the study. Cytotoxicity was detected by CCK-8 reagents. Cell apoptosis was detected by flow cytometry and inverted fluorescence microscopy to detect the binding of apoptotic dyes to cells. Western blot was used to detect the expression of proteins. Drug-protein molecular docking simulation by using Sybyl-x 2.0 software. RESULTS: Non-toxic concentrations of NFV (1.25-5 µM) could reverse Adriamycin (ADR), colchicine, paclitaxel, and imatinib resistance of K562/ADR cells, with reversal indexes of up to 10.8, 7.4, 57, and 9.3, respectively. NFV inhibited P-gp efflux function, as evidenced by the significant increase in the intracellular accumulation of ADR and Rho-123, without affecting P-gp protein and mRNA expression levels. Further ATP content detection and molecular docking simulations showed that NFV could decrease intracellular ATP content and has a high affinity with the active functional regions of P-gp, respectively. When co-administered with ADR, NFV increased intracellular reactive oxygen species as well as blocked the ERK/Akt signaling pathway, leading to cell apoptosis. CONCLUSION: NFV inhibited P-gp function, decreased intracellular ATP content, and promoted cell apoptosis in K562/ADR cells, thereby reversing MDR. These findings encourage further animal and clinical MDR studies with a combination therapy consisting of NFV and chemotherapeutic drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores da Protease de HIV/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Nelfinavir/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Pharmacol Res ; 137: 56-63, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240824

RESUMO

Oxidative stress plays important roles in intestinal ischemia-reperfusion (II/R) injury, and exploration of effective lead compounds against II/R injury via regulating oxidative stress is necessary. In this study, the effects and possible mechanisms of dioscin against hypoxia-reoxygenation (H/R) injury in IEC-6 cells and II/R injury in mice were investigated. The results showed that dioscin markedly increased cell viability, and reduced ROS level caused by H/R injury in IEC-6 cells. in vivo, dioscin significantly reduced the levels of MDA, MPO and chiu' score, increased SOD level, and improved pathological changes caused by II/R injury in mice. Mechanism investigation showed that dioscin markedly up-regulated the expression levels of Sirt6 by decreasing miR-351-5p levels, decreased the expression levels of p-FoxO3α via activating AMPK, and increased the expression levels of MnSOD and CAT. In addition, miR-351-5p mimic in IEC-6 cells and agomir in mice increased ROS levels and aggravated II/R injury. MiR-351-5p inhibitor in IEC-6 cells and antagomir in mice alleviated these actions by adjusting Sirt6 signal pathway. MiR-351-5p interference experiment further confirmed that dioscin increased Sirt6 expression level by down- regulating miR-351-5p level to inhibit oxidative stress and reduce II/R injury. Furthermore, we also demonstrated that dioscin inhibited the expression level of miR-351-5p via reducing TRBP expression level during the generation of miR-351-5p mature body. Dioscin showed protective effect against II/R injury via adjusting miR- 351-5/Sirt6 signal to reduce oxidative stress, which should be considered as one potent candidate to treat II/R injury. In addition, miR-351-5/Sirt6 could be one effective drug target against II/R injury.


Assuntos
Diosgenina/análogos & derivados , MicroRNAs/genética , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/genética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/metabolismo
13.
J Gastroenterol Hepatol ; 33(2): 533-542, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28699662

RESUMO

BACKGROUND AND AIM: Nonalcoholic fatty liver disease (NAFLD) has become a major health concern worldwide. The present study was designed to investigate the effects of calycosin against high-fat diet (HFD)-induced NAFLD in mice. METHODS: C57BL/6 J male mice were fed with HFD to induce NAFLD model and treated with or without calycosin for 12 weeks. The levels of ALT, AST, insulin, and adiponectin were measured using biochemical methods. Hemotoxylin and eosin staining and Oil Red O staining were used to determine the liver histopathology changes and measure the degree of lipid accumulation respectively. Glucose tolerance tests and insulin tolerance tests were performed followed by quantitative insulin sensitivity check index determination. Western blot and quantitative real-time polymerase chain reaction were used to explore the potential mechanism involved in the beneficial effects of calycosin. RESULTS: Calycosin effectively decreased the levels of ALT and AST, increased the levels of adiponectin and insulin. Hemotoxylin and eosin staining indicated calycosin treatment remarkably improved liver injury. Oil Red O staining indicated calycosin treatment remarkably improved lipid accumulation. Quantitative insulin sensitivity check index in HFD fed mice was significantly lower than in the standard chow fed mice. Further, calycosin suppressed phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, sterol-regulatory element binding protein 1c, and FASN involved in gluconeogenesis and triglyceride synthesis. Calycosin increased glycogen synthase kinase 3 beta, glucose transporter 4, and phosphorylated insulin receptor substrates 1 and 2 expressions involved in glucose metabolism. The aforementioned beneficial effects of calycosin against HFD-induced NAFLD may be attributed to farnesoid X receptor activation. CONCLUSION: Calycosin could produce the favorable effects against HFD-induced NAFLD in mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Isoflavonas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Adiponectina/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
14.
Regul Toxicol Pharmacol ; 98: 58-68, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030101

RESUMO

Acetaminophen (APAP) is a worldwide used drug for treating fever and pain. However, APAP overdose is the leading cause of drug-induced liver injury. The purpose of the current study is to evaluate the hepatoprotective effect of ginsenoside Rg1 (Rg1), the main pharmacologically active compounds of Panax ginseng, against APAP-induced acute liver injury, and further to elucidate the involvement of Nrf2 signaling pathway by in vivo and in vitro experiments. Male C57BL/6 mice were treated with Rg1 for 3 days before injection of APAP. Serum and liver tissue samples were collected 6 h later. The results indicated that Rg1 significantly attenuated APAP-induced hepatotoxicity and oxidative stress in a dose-dependent manner. Rg1 effectively enhanced antioxidant and detoxification capacity, which is largely dependent on up-regulating Nrf2 nuclear translocation, reducing Keap1 protein expression and up-regulating Nrf2 target genes including GCLC, GCLM, HO-1, NQO1, Ugt1a1, Ugt1a6, Ugt2b1, Sult2a1, Mrp2, Mrp3 and Mrp4. Furthermore, Rg1 repressed the activities of Cyp2e1, Cyp3a11, Cyp1a2, which are important enzymes in the formation of APAP toxic metabolite N-acetyl-p-benzoquinone imine. However, the changes in transporters and enzymes, as well as ameliorative liver histology induced by Rg1 were abrogated by Nrf2 antagonist all-transretinoic acid in vivo and Nrf2 siRNA in vitro. In conclusion, Rg1 produced hepatoprotective effects against APAP-induced acute liver injury via Nrf2 signaling pathway. Rg1 might be an effective approach for the prevention against acute liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Acetaminofen , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
15.
Environ Toxicol ; 33(10): 1050-1060, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964319

RESUMO

Oxidative stress and inflammatory response are well known to be involved in the pathogenesis of acute liver injury. This study was performed to examine the hepatoprotective effect of ginsenoside Rg1 (Rg1) against CCl4 -induced acute liver injury, and further to elucidate the involvement of Nrf2 signaling pathway in vivo and in vitro. Mice were orally administered Rg1 (15, 30, and 60 mg/kg) or sulforaphane (SFN) once daily for 1 week prior to 750 µL/kg CCl4 injection. The results showed that Rg1 markedly altered relative liver weights, promoted liver repair, increased the serum level of TP and decreased the serum levels of ALT, AST and ALP. Hepatic oxidative stress was inhibited by Rg1, as evidenced by the decrease in MDA, and increases in GSH, SOD, and CAT in the liver. Further research demonstrated that Rg1 suppressed liver inflammation response through repressing the expression levels of inflammation-related genes including TNF-α, IL-1ß, IL-6, COX-2, and iNOS. In addition, Rg1 enhanced antioxidative stress and liver detoxification abilities by up-regulating Nrf2 and its target-genes such as GCLC, GCLM, HO-1, NQO1, Besp, Mrp2, Mrp3, Mrp4, and down-regulating Cyp2e1. However, the changes in Nrf2 target-genes, as well as ameliorative liver histology induced by Rg1 were abrogated by Nrf2 antagonist all-transretinoic acid in vivo and Nrf2 siRNA in vitro. Overall, the findings indicated that Rg1 might be an effective approach for the prevention against acute liver injury by activating Nrf2 signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Ginsenosídeos/farmacologia , Panax/química , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocinas/metabolismo , Ginsenosídeos/química , Ginsenosídeos/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Panax/metabolismo , Substâncias Protetoras/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo
16.
Acta Pharmacol Sin ; 38(1): 69-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773935

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from the traditional Chinese medicine rhizoma alismatis, which exhibits a number of pharmacological activities, including anti-hepatitis virus, anti-cancer and antibacterial effects. In this study we examined whether AB23A protected against non-alcoholic steatohepatitis (NASH) in mice, and the mechanisms underlying the protective effects. NASH was induced in mice fed a methionine and choline-deficient (MCD) diet for 4 weeks. The mice were simultaneously treated with AB23A (15, 30, and 60 mg·kg-1·d-1, ig) for 4 weeks. On the last day, blood samples and livers were collected. Serum liver functional enzymes, inflammatoru markers were assessed. The livers were histologically examined using H&E, Oil Red O, Masson's trichrome and Sirius Red staining. Mouse primary hepatocytes were used for in vitro experiments. The mechanisms underlying AB23A protection were analyzed using siRNA, qRT-PCR, and Western blot assays. AB23A treatment significantly and dose-dependently decreased the elevated levels of serum ALT and AST in MCD diet-fed mice. Furthermore, AB23A treatment significantly reduced hepatic triglyceride accumulation, inflammatory cell infiltration and hepatic fibrosis in the mice. AB23A-induced decreases in serum and hepatic lipids were related to decreased hepatic lipogenesis through decreasing hepatic levels of SREBP-1c, FAS, ACC1 and SCD1 and increased lipid metabolism via inducing PPARα, CPT1α, ACADS and LPL. The reduction in inflammatory cell infiltration corresponded to deceased serum levels of mKC and MCP-1 and decreased hepatic gene expression of MCP-1 and VCAM-1. The reduction in hepatic fibrosis was correlated with decreased hepatic gene expression of fibrosis markers. The protective effects of AB23A were FXR-dependent, because treatment with the FXR agonist CDCA mimicked AB23A-induced hepato-protection in the mice, whereas co-administration of FXR antagonist guggulsterone abrogated AB23A-induced hepato-protection. In mouse primary hepatocytes, FXR gene silencing abrogated AB23A-induced changes in gene expression of Apo C-II, CPT1α, ACADS and LPL. AB23A produces protective effects against NASH in mice via FXR activation.


Assuntos
Colestenonas/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Ácido Quenodesoxicólico/farmacologia , Colestenonas/antagonistas & inibidores , Deficiência de Colina , Relação Dose-Resposta a Droga , Fibrose/patologia , Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/deficiência , Camundongos , Pregnenodionas/farmacologia , Cultura Primária de Células , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
17.
Toxicol Appl Pharmacol ; 306: 27-35, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377006

RESUMO

The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1 and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metotrexato/farmacocinética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Estilbenos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Células HEK293 , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Metotrexato/efeitos adversos , Metotrexato/farmacologia , Ratos Wistar , Eliminação Renal/efeitos dos fármacos , Resveratrol
18.
Toxicol Appl Pharmacol ; 305: 127-135, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27317372

RESUMO

Alpha-naphthylisothiocyanate (ANIT) is a toxicant that is widely used in rodents to model human intrahepatic cholestasis. The aim of the study is to investigate whether effects of dioscin on ANIT-induced cholestasis are related to changes in expression of hepatic transporters in rats. Effects of dioscin on cholestasis were examined by histology and biochemical marker levels. The functional changes of hepatic transporters were determined by in vitro, in situ and in vivo. qRT-PCR and western blot were used to assess the expression of hepatic transporters in cholestatic rats. Dioscin administration could ameliorate cholestasis, as evidenced by reduced biochemical markers as well as improved liver pathology. The uptakes of organic anion transporting polypeptide (Oatp) substrates were altered in liver uptake index in vivo, perfused rat liver in situ and isolated rat hepatocytes in vitro in cholestasis rats. qRT-PCR and western blot analysis indicated co-treatment of ANIT with dioscin prevented the adaptive down-regulation of Oatp1a1, 1b2, and prompted the up-regulation of Oatp1a4, multidrug resistance-associated protein (Mrp) 2 and bile salt export pump (Bsep). In addition, concerted effects on Mrp2 and Bsep occurred through up-regulation of small heterodimer partner by activating farnesoid X receptor. Dioscin might prevent impairment of hepatic function by restoring hepatic transporter expression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/metabolismo , Diosgenina/análogos & derivados , Transportadores de Ânions Orgânicos/metabolismo , Substâncias Protetoras/farmacologia , 1-Naftilisotiocianato , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/patologia , Diosgenina/farmacocinética , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Estrona/análogos & derivados , Estrona/farmacocinética , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Transportadores de Ânions Orgânicos/genética , Substâncias Protetoras/farmacocinética , Substâncias Protetoras/uso terapêutico , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
20.
Can J Physiol Pharmacol ; 94(6): 620-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26991394

RESUMO

A further investigation was performed on the vascular effect of endogenous histamine using the histamine releaser, compound 48/80, in rat mesenteric vascular beds with active tone. In preparations with intact endothelium, low concentrations of compound 48/80 (1.53 × 10(-5) - 3 × 1.53 × 10(-5) mg/mL) perfusion for 1 min only induced a small vasodilation. High concentrations of compound 48/80 (1.53 × 10(-4) - 3 × 1.53 × 10(-2) mg/mL) induced a biphasic vascular responses, an initial vasoconstriction followed a subsequent long-lasting vasodilation. The vasodilation induced by low concentrations of compound 48/80 and the vasoconstriction induced by high concentration of compound 48/80 was inhibited by olopatadine. However, cimetidine did not affect the responses induced by compound 48/80. Endothelium removal enlarged the compound 48/80-induced phase-2 vasoconstriction, while it attenuated the phase-3 vasodilation. Additionally, indomethacin and seratrodast significantly inhibited vasoconstriction but it did not affect the long-lasting vasodilation induced by high concentrations of compound 48/80. Ruthenium red inhibited the vasodilation induced by low concentrations and high concentrations of compound 48/80. These results suggest that the vasoconstriction induce by high concentrations of compound 48/80 is mediated by endogenous histamine released from mast cells. It is also suggested that thromboxane A2 released from mast cells is related to the vasoconstriction.


Assuntos
Artérias Mesentéricas/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , p-Metoxi-N-metilfenetilamina/farmacologia , Animais , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA