Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Oecologia ; 189(4): 1107-1120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850884

RESUMO

Understanding the resistance and resilience of foundation plant species to climate change is a critical issue because the loss of these species would fundamentally reshape communities and ecosystem processes. High levels of population genetic diversity may buffer foundation species against climate disruptions, but the strong selective pressures associated with climatic shifts may also rapidly reduce such diversity. We characterized genetic diversity and its responsiveness to experimental drought in the foundation plant, black grama grass (Bouteloua eriopoda), which dominates many western North American grasslands and shrublands. Previous studies suggested that in arid ecosystems, black grama reproduces largely asexually via stolons, and thus is likely to have low genetic variability, which might limit its potential to respond to climate disruptions. Using genotyping-by-sequencing, we demonstrated unexpectedly high genetic variability among black grama plants in a 1 ha site within the Sevilleta National Wildlife Refuge in central New Mexico, suggesting some level of sexual reproduction. Three years of experimental, growing season drought reduced black grama survival and biomass (the latter by 96%), with clear genetic differentiation (higher FST) between plants succumbing to drought and those remaining alive. Reduced genetic variability in the surviving plants in drought plots indicated that the experimental drought had forced black grama populations through selection bottlenecks. These results suggest that foundation grass species, such as black grama, may experience rapid evolutionary change if future climates include more severe droughts.


Assuntos
Secas , Ecossistema , Variação Genética , Pradaria , New Mexico , Poaceae
2.
BMC Plant Biol ; 18(1): 12, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334940

RESUMO

CORRECTION: Following publication of the original article [1], the authors reported that the number of genes overlaying the bar graph in Fig. 3A were incorrectly counted and inserted (i.e. including a title tile, and in inverse order). The corrected numbers are below and match with the listed genes supplied in Additional File: Table S2.

3.
BMC Plant Biol ; 14: 118, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885405

RESUMO

BACKGROUND: A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS: We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS: Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.


Assuntos
Meiose/genética , Transcriptoma/genética , Zea mays/citologia , Zea mays/genética , Simulação por Computador , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes Mitocondriais , Estudos de Associação Genética , Hibridização In Situ , Endogamia , Mitocôndrias/genética , Pólen/citologia , Pólen/metabolismo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Plântula/genética , Análise de Sequência de RNA , Regulação para Cima/genética
4.
ACS Chem Biol ; 19(2): 357-369, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293740

RESUMO

Recent advances in sequencing techniques unveiled the vast potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) encoded in microbiomes. Class I lantibiotics such as nisin A, widely used as a food preservative, have been investigated for their efficacy in killing pathogens. However, the impact of nisin and nisin-like class I lantibiotics on commensal bacteria residing in the human gut remains unclear. Here, we report six gut-derived class I lantibiotics that are close homologues of nisin, four of which are novel. We applied an improved lantibiotic expression platform to produce and purify these lantibiotics for antimicrobial assays. We determined their minimal inhibitory concentration (MIC) against both Gram-positive human pathogens and gut commensals and profiled the lantibiotic resistance genes in these pathogens and commensals. Structure-activity relationship (SAR) studies with analogs revealed key regions and residues that impact their antimicrobial properties. Our characterization and SAR studies of nisin-like lantibiotics against both pathogens and human gut commensals could shed light on the future development of lantibiotic-based therapeutics and food preservatives.


Assuntos
Bacteriocinas , Nisina , Humanos , Nisina/farmacologia , Bacteriocinas/farmacologia , Bacteriocinas/química , Antibacterianos/química , Sequência de Aminoácidos
5.
Cell Host Microbe ; 32(1): 117-130.e4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103544

RESUMO

Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.


Assuntos
Microbioma Gastrointestinal , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Disbiose , Fezes , Ácidos Graxos
6.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496653

RESUMO

Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.

7.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766138

RESUMO

Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.

8.
Nat Microbiol ; 9(1): 55-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177297

RESUMO

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.


Assuntos
Bactérias , Ecossistema , Humanos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Respiração
9.
Cell Host Microbe ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39293438

RESUMO

Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome, with diverse impacts on human health. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, metabolomic, and horizontal gene transfer analyses. Families, genera, and species could be grouped based on many distinctive features. We also observed extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-species diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses represents a valuable resource to facilitate informed selection of strains for microbiome reconstitution.

10.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662397

RESUMO

DNA transfer is ubiquitous in the gut microbiota, especially among species of Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. Here, we show that acquisition of a ubiquitous integrative and conjugative element encoding an antagonistic system shuts down the native contact-dependent antagonistic system of Bacteroides fragilis . Despite inactivating the native antagonism system, mobile element acquisition increases fitness of the B. fragilis transconjugant over its progenitor by arming it with a new weapon. This DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members containing the same element yet is armed for communal defense.

11.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105970

RESUMO

The human gut microbiome contains many bacterial strains of the same species ('strain-level variants'). Describing strains in a biologically meaningful way rather than purely taxonomically is an important goal but challenging due to the genetic complexity of strain-level variation. Here, we measured patterns of co-evolution across >7,000 strains spanning the bacterial tree-of-life. Using these patterns as a prior for studying hundreds of gut commensal strains that we isolated, sequenced, and metabolically profiled revealed widespread structure beneath the phylogenetic level of species. Defining strains by their co-evolutionary signatures enabled predicting their metabolic phenotypes and engineering consortia from strain genome content alone. Our findings demonstrate a biologically relevant organization to strain-level variation and motivate a new schema for describing bacterial strains based on their evolutionary history.

12.
Cell Rep ; 42(8): 112861, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37523264

RESUMO

Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.


Assuntos
Clostridioides difficile , Colite , Animais , Camundongos , Virulência/genética , Clostridioides difficile/genética , Clostridioides/metabolismo , Genômica , Colite/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711955

RESUMO

Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.

14.
Front Transplant ; 2: 1182534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38993864

RESUMO

Background: Emerging evidence is revealing the impact of the gut microbiome on hematopoietic and solid organ transplantation. Prior studies postulate that this influence is mediated by bioactive metabolites produced by gut-dwelling commensal bacteria. However, gut microbial metabolite production has not previously been measured among heart transplant (HT) recipients. Methods: In order to investigate the potential influence of the gut microbiome and its metabolites on HT, we analyzed the composition and metabolite production of the fecal microbiome among 48 HT recipients at the time of HT. Results: Compared to 20 healthy donors, HT recipients have significantly reduced alpha, i.e. within-sample, microbiota diversity, with significantly lower abundances of key anaerobic commensal bacteria and higher abundances of potentially pathogenic taxa that have been correlated with adverse outcomes in other forms of transplantation. HT recipients have a wide range of microbiota-derived fecal metabolite concentrations, with significantly reduced levels of immune modulatory metabolites such as short chain fatty acids and secondary bile acids compared to healthy donors. These differences were likely due to disease severity and prior antibiotic exposures but were not explained by other demographic or clinical factors. Conclusions: Key potentially immune modulatory gut microbial metabolites are quantifiable and significantly reduced among HT recipients compared to healthy donors. Further study is needed to understand whether this wide range of gut microbial dysbiosis and metabolite alterations impact clinical outcomes and if they can be used as predictive biomarkers or manipulated to improve transplant outcomes.

15.
Nat Microbiol ; 8(11): 2033-2049, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845315

RESUMO

Progression of chronic liver disease is precipitated by hepatocyte loss, inflammation and fibrosis. This process results in the loss of critical hepatic functions, increasing morbidity and the risk of infection. Medical interventions that treat complications of hepatic failure, including antibiotic administration for systemic infections and lactulose treatment for hepatic encephalopathy, can impact gut microbiome composition and metabolite production. Here, using shotgun metagenomic sequencing and targeted metabolomic analyses on 847 faecal samples from 262 patients with acute or chronic liver disease, we demonstrate that patients hospitalized for liver disease have reduced microbiome diversity and a paucity of bioactive metabolites, including short-chain fatty acids and bile acid derivatives, that impact immune defences and epithelial barrier integrity. We find that patients treated with the orally administered but non-absorbable disaccharide lactulose have increased densities of intestinal bifidobacteria and reduced incidence of systemic infections and mortality. Bifidobacteria metabolize lactulose, produce high concentrations of acetate and acidify the gut lumen in humans and mice, which, in combination, can reduce the growth of antibiotic-resistant bacteria such as vancomycin-resistant Enterococcus faecium in vitro. Our studies suggest that lactulose and bifidobacteria serve as a synbiotic to reduce rates of infection in patients with severe liver disease.


Assuntos
Encefalopatia Hepática , Lactulose , Humanos , Camundongos , Animais , Encefalopatia Hepática/tratamento farmacológico , Encefalopatia Hepática/prevenção & controle , Antibacterianos/uso terapêutico
16.
Commun Biol ; 5(1): 672, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798971

RESUMO

The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.


Assuntos
Consolidação da Memória , Proteínas de Ligação a RNA , Transmissão Sináptica , Transativadores , Animais , Camundongos , Camundongos Knockout , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo
17.
Nat Commun ; 13(1): 6615, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329015

RESUMO

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Assuntos
COVID-19 , Pneumonia , Insuficiência Respiratória , Humanos , SARS-CoV-2 , Ácidos e Sais Biliares , Imunidade
18.
J Comp Neurol ; 529(5): 969-986, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710567

RESUMO

This study investigates the response to spinal cord injury in the gray short-tailed opossum (Monodelphis domestica). In opossums spinal injury early in development results in spontaneous axon growth through the injury, but this regenerative potential diminishes with maturity until it is lost entirely. The mechanisms underlying this regeneration remain unknown. RNA sequencing was used to identify differential gene expression in regenerating (SCI at postnatal Day 7, P7SCI) and nonregenerating (SCI at Day 28, P28SCI) cords +1d, +3d, and +7d after complete spinal transection, compared to age-matched controls. Genes showing significant differential expression (log2FC ≥ 1, Padj ≤ 0.05) were used for downstream analysis. Across all time-points 233 genes altered expression after P7SCI, and 472 genes altered expression after P28SCI. One hundred and forty-seven genes altered expression in both injury ages (63% of P7SCI data set). The majority of changes were gene upregulations. Gene ontology overrepresentation analysis in P7SCI gene-sets showed significant overrepresentations only in immune-associated categories, while P28SCI gene-sets showed overrepresentations in these same immune categories, along with other categories such as "cell proliferation," "cell adhesion," and "apoptosis." Cell-type-association analysis suggested that, regardless of injury age, injury-associated gene transcripts were most strongly associated with microglia and endothelial cells, with strikingly fewer astrocyte, oligodendrocyte and neuron-related genes, the notable exception being a cluster of mostly downregulated oligodendrocyte-associated genes in the P7SCI + 7d gene-set. Our findings demonstrate a more complex transcriptomic response in nonregenerating cords, suggesting a strong influence of non-neuronal cells in the outcome after injury and providing the largest survey yet of the transcriptomic changes occurring after SCI in this model.


Assuntos
Monodelphis/fisiologia , Traumatismos da Medula Espinal/genética , Regeneração da Medula Espinal/fisiologia , Transcriptoma , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Especificidade de Órgãos , Especificidade da Espécie , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
19.
Viruses ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922755

RESUMO

Tobacco etch virus (TEV; genus Potyvirus) is flexuous rod shaped with a single molecule of single-stranded RNA and causes serious yield losses in species in the Solanaceae. Three TEV strains (HAT, Mex21, and N) are genetically distinct and cause different disease symptoms in plants. Here, a transcriptomic RNA sequencing approach was taken for each TEV strain to evaluate gene expression of the apical stem segment of pepper plants during two stages of disease development. Distinct profiles of Differentially Expressed Genes (DEGs) were identified for each TEV strain. DEG numbers increased with degree of symptom severity: 24 from HAT, 1190 from Mex21, and 4010 from N. At 7 days post-inoculation (dpi), when systemic symptoms were similar, there were few DEGs for HAT- and Mex21-infected plants, whereas N-infected plants had 2516 DEGs. DEG patterns from 7 to 14 dpi corresponded to severity of disease symptoms: milder disease with smaller DEG changes for HAT and Mex21 and severe disease with larger DEG changes for N. Strikingly, in each of these comparisons, there are very few overlapping DEGs among the TEV strains, including no overlapping DEGs between all three strains at 7 or 14 dpi.


Assuntos
Capsicum/genética , Capsicum/virologia , Perfilação da Expressão Gênica , Caules de Planta/virologia , Potyvirus/patogenicidade , Transcriptoma , Capsicum/anatomia & histologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/virologia , Caules de Planta/genética , Potyvirus/classificação , Potyvirus/genética , Potyvirus/crescimento & desenvolvimento
20.
Sci Rep ; 11(1): 8281, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859306

RESUMO

Physical inactivity leads to losses of bone mass and strength in most mammalian species. In contrast, hibernating bears show no bone loss over the prolonged periods (4-6 months) of immobility during winter, which suggests that they have adaptive mechanisms to preserve bone mass. To identify transcriptional changes that underlie molecular mechanisms preventing disuse osteoporosis, we conducted a large-scale gene expression screening in the trabecular bone and bone marrow, comparing hibernating and summer active bears through sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated down-regulation of genes involved in bone resorption, osteoclast differentiation and signaling, and apoptosis during hibernation. These findings are consistent with previous histological findings and likely contribute to the preservation of bone during the immobility of hibernation. In contrast, no significant enrichment indicating directional changes in gene expression was detected in the gene sets of bone formation and osteoblast signaling in hibernating bears. Additionally, we revealed significant and coordinated transcriptional induction of gene sets involved in aerobic energy production including fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial metabolism. Mitochondrial oxidation was likely up-regulated by transcriptionally induced AMPK/PGC1α pathway, an upstream stimulator of mitochondrial function.


Assuntos
Densidade Óssea/genética , Reabsorção Óssea/genética , Osso e Ossos/metabolismo , Hibernação/fisiologia , Osteogênese/genética , Transcrição Gênica/genética , Ursidae/genética , Ursidae/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Osteoclastos/fisiologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA