Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(36): 21995-21999, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069412

RESUMO

Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which structural change accompanies ICT. Herein, we used time-resolved spectroscopy to study TICT in pyrene derivatives that are promising blue organic light emitting diode (OLED) emitter candidates; these derivatives show strong solvent-dependent charge-transfer (CT) behavior with unique fluorescence properties, increased fluorescence intensity in polar solvent. Slight structural changes that do not affect excited state dynamics were observed in nonpolar solvents, while polar solvents were found to affect excited state dynamics and CT characteristics, which affect their unusual fluorescence behavior. The TICT behavior of these pyrene derivatives can be modulated through structural modification. Our study provides valuable guidelines for the control of optical properties, including the luminescence efficiencies of OLED emitters that show TICT characteristics.

2.
Small ; 17(52): e2102792, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636144

RESUMO

Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.


Assuntos
Pontos Quânticos , Luminescência , Sulfetos , Compostos de Zinco
3.
Acc Chem Res ; 51(6): 1349-1358, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29508985

RESUMO

Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To scrutinize this intriguing and challenging scientific issue, expanded porphyrins have been utilized as the ideal testing platform for investigating aromaticity because they show distinct aromatic and antiaromatic characters with aromaticity-specific spectroscopic features. Expanded porphyrins exhibit perfect aromatic and antiaromatic congener pairs having the same molecular framework but different numbers of π electrons, which facilitates the study of the pure effect of aromaticity by comparative analyses. On the basis of the characteristics of expanded porphyrins, time-resolved electronic and vibrational absorption spectroscopies capture the changes in electronic structure and molecular conformations driven by the change in aromaticity and provide clear evidence for aromaticity reversal in the excited states. The approaches described in this Account pave the way for the development of new and alternative experimental indices for the evaluation of excited-state aromaticity, which will enable overarching and fundamental comprehension of the role of (anti)aromaticity in the stability, dynamics, and reactivity in the excited states with possible implications for practical applications.

4.
Chem Rev ; 117(4): 2257-2312, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-27981841

RESUMO

Modification of aromaticity is regarded as one of the most interesting and important research topics in the field of physical organic chemistry. Particularly, porphyrins and their analogues (porphyrinoids) are attractive molecules for exploring various types of aromaticity because most porphyrinoids exhibit circular conjugation pathways in their macrocyclic rings with various molecular structures. Aromaticity in porphyrinoids is significantly affected by structural modification, redox chemistry, NH tautomerization, and electronic states (singlet and triplet excited states). Conversely, aromaticity significantly affects the spectroscopic properties and chemical reactivities of porphyrinoids. In this context, considerable efforts have been devoted to understanding and controlling the aromaticity and antiaromaticity of porphyrinoids. Thus, a series of porphyrinoids are in the limelight, being expected to shed light on this field because they have some advantages to demonstrate the switching of aromaticity; it is possible to control the aromaticity by lowering the temperature, adding and removing the protons of expanded porphyrins, changing the chemical environment, and switching the electronic states (triplet and singlet excited states) by photoexcitation. In this regard, this Review describes the control of aromaticity in various expanded porphyrins from the spectroscopic point of view with assistance from theoretical calculations.


Assuntos
Compostos Aza/química , Modelos Teóricos , Porfirinas/química , Estrutura Molecular , Temperatura
5.
J Am Chem Soc ; 139(2): 993-1002, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27977172

RESUMO

A series of dendritic multiporphyrin arrays (PZnTz-nPFB; n = 2, 4, 8) comprising a triazole-bearing focal zinc porphyrin (PZn) with a different number of freebase porphyrin (PFB) wings has been synthesized, and their photoinduced energy transfer process has been evaluated. UV/vis absorption, emission, and time-resolved fluorescence measurements indicated that efficient excitation energy transfer takes place from the focal PZn to PFB wings in PZnTz-nPFB's. The triazole-bearing PZn effectively formed host-guest complexes with anionic species by means of axial coordination with the aid of multiple C-H hydrogen bonds. By addition of various anionic guests to PZnTz and PZnTz-nPFB's, strong bathochromic shifts of PZn absorption were observed, indicating the HOMO-LUMO gap (ΔEHOMO-LUMO) of PZn decreased by anion binding. Time-resolved fluorescence measurements revealed that the fluorescence emission predominantly takes place from PZn in PZnTz-nPFB's after the addition of CN-. This change was reversible because a treatment with a silver strip to remove CN- fully recovered the original energy transfer process from the focal PZn to PFB wings.

6.
Angew Chem Int Ed Engl ; 56(11): 2932-2936, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165184

RESUMO

We have investigated the aromaticity of singly twisted Möbius aromatic and doubly twisted Hückel antiaromatic bis(palladium(II)) [36]octaphyrins in the lowest triplet state (T1 ) by spectroscopic measurements and quantum calculations. The T1 state of the singly twisted Möbius [36]octaphyrin shows broad and weak absorption spectral features that are analogous to those of antiaromatic expanded porphyrins while the T1 state of the doubly twisted Hückel [36]octaphyrin exhibits intense and distinct spectral features, indicating the aromatic nature. These results along with theoretical calculations support the hypothesis that the aromaticity is reversed in the T1 state. Furthermore, we show that the degree of structural smoothness affects the aromaticity reversal in the T1 state.

7.
Angew Chem Int Ed Engl ; 55(22): 6487-91, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27079620

RESUMO

The aromaticity reversal in the lowest triplet state (T1 ) of a comparable set of Hückel/Möbius aromatic metalated expanded porphyrins was explored by optical spectroscopy and quantum calculations. In the absorption spectra, the T1 states of the Möbius aromatic species showed broad, weak, and ill-defined spectral features with small extinction coefficients, which is in line with typical antiaromatic expanded porphyrins. In combination with quantum calculations, these results indicate that the Möbius aromatic nature of the S0 state is reversed to Möbius antiaromaticity in the T1 state. This is the first experimental observation of aromaticity reversal in the T1 state of Möbius aromatic molecules.

8.
Angew Chem Int Ed Engl ; 55(39): 11930-4, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27510963

RESUMO

Aromaticity reversal in the lowest triplet state, or Baird's rule, has been postulated for the past few decades. Despite numerous theoretical works on aromaticity reversal, experimental study is still at a rudimentary stage. Herein, we investigate the aromaticity reversal in the lowest excited triplet state using a comparable set of [26]- and [28]hexaphyrins by femtosecond time-resolved infrared (IR) spectroscopy. Compared to the relatively simple IR spectra of [26]bis(rhodium) hexaphyrin (R26H), those of [28]bis(rhodium) hexaphyrin (R28H) show complex IR spectra the region for the stretching modes of conjugated rings. Whereas time-resolved IR spectra of R26H in the excited triplet state are dominated by excited state IR absorption peaks, while those of R28H largely show ground state IR bleaching peaks, reflecting the aromaticity reversal in the lowest triplet state. These contrasting IR spectral features serve as new experimental aromaticity indices for Baird's rule.

9.
Angew Chem Int Ed Engl ; 55(39): 12045-9, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27530732

RESUMO

Complexation of novel multiply N-confused expanded calix[n]phyrins with boron difluoride afforded a new class of cyclic BODIPY (boron-dipyrromethene) arrays. The structures of circularly arranged BODIPY subunits linked in an N-confused fashion give rise to such photophysical properties unique to the macrocycles as redshifted emission wavelengths along with apparent large Stokes shifts, long emission lifetimes, and solid-state lasing. The DFT calculations support the size-dependent excited-state dynamics of the macrocycles.

10.
J Am Chem Soc ; 137(37): 11856-9, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26340352

RESUMO

We have demonstrated aromaticity reversal in the singlet excited states of internally 1,3-phenylene-strapped [26]- and [28]hexaphyrins (P26H and P28H). P26H displays a broad and reduced singlet-excited-state absorption spectrum, whereas P28H exhibits a sharp and intense singlet-excited-state absorption spectrum; both are in contrast to the ground-state absorption spectra, strongly indicating aromaticity reversal in the singlet excited state. Furthermore, magnetic and topological indices of aromaticity such as nucleus-independent chemical shift and harmonic oscillator model of aromaticity values for P26H and P28H also suggest that their singlet excited states become antiaromatic and aromatic, respectively.

11.
Chemistry ; 21(2): 615-30, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25421552

RESUMO

In this work, we have elucidated in detail the folding properties of two perylene bisimide (PBI) foldamers composed of two and three PBI units, respectively, attached to a phenylene ethynylene backbone. The folding behaviors of these new PBI folda-dimer and trimer have been studied by solvent-dependent UV/Vis absorption and 1D and 2D NMR spectroscopy, revealing facile folding of both systems in tetrahydrofuran (THF). In CHCl3 the dimer exists in extended (unfolded) conformation, whereas partially folded conformations are observed in the trimer. Temperature-dependent (1) H NMR spectroscopic studies in [D8 ]THF revealed intramolecular dynamic processes for both PBI foldamers due to, on the one hand, hindered rotation around CN imide bonds and, on the other hand, backbone flapping; the latter process being energetically more demanding as it was observed only at elevated temperature. The structural features of folded conformations of the dimer and trimer have been elucidated by different 2D-NMR spectroscopy (e.g., ROESY and DOSY) in [D8 ]THF. The energetics of folding processes for the PBI dimer and trimer have been assessed by calculations applying various methods, particularly the semiempirical PM6-DH2 and the more sophisticated B97D approach, in which relevant dispersion corrections are included. These calculations corroborate the results of NMR spectroscopic studies. Folding features in the excited states of these PBI foldamers have been characterized by using time-resolved fluorescence and transient absorption spectroscopy in THF and CHCl3 , exhibiting similar solvent-dependent behavior as observed for the ground state. Interestingly, photoinduced electron transfer (PET) process from electron-donating backbone to electron-deficient PBI core for extended, but not for folded, conformations was observed, which can be explained by a fast relaxation of excited PBI stacks in the folded conformation into fluorescent excimer states.

12.
Chemistry ; 21(43): 15328-38, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26338286

RESUMO

Azobenzene-bridged ß-to-ß and meso-to-meso porphyrin nanorings were successfully synthesized by a palladium-catalyzed Suzuki-Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di- and tetramers are in the all-trans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the all-trans configurations: the pure all-trans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump-power-dependent decay results revealed excitation energy transfer for azobenzene-bridged zinc-porphyrin nanorings. The distances between porphyrin units of these azobenzene-bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso-to-meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)-porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di- and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.

13.
Angew Chem Int Ed Engl ; 54(50): 15197-201, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26510641

RESUMO

A set of 5,15-biphenylene-bridged porphyrin wheels, namely, [n]cyclo-5,15-porphyrinylene-4,4'-biphenylenes [n]CPB, have been synthesized through the platination of 5,15-bis(4-(pinacolboranyl)phenyl) nickel(II) porphyrin and subsequent reductive elimination of Pt(II) (cod)-bridged cyclic porphyrin intermediates. The calculated strain energies for [3]CPB, [4]CPB, [5]CPB, and [6]CPB are 49.3, 32.9, 23.5, and 16.0 kcal mol(-1) , respectively. UV/Vis absorption spectra and cyclic voltammetry indicated characteristic ring-size-dependent absorption-peak shifts and redox-potential shifts, which presumably reflect the degree of strain in the π-systems. Excitation-energy hopping (EEH) times were determined to be 5.1, 8.0, 8.0, and 9.6 ps for [3]CPB, [4]CPB, [5]CPB, and [6]CPB, respectively, in a pump-power-dependent TA experiment.

14.
J Am Chem Soc ; 136(11): 4281-6, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24568213

RESUMO

Reported here is a new hybrid macrocycle, cyclo[1]furan[1]pyridine[4]pyrrole (1), that bears analogy to the previously reported mixed heterocycle system cyclo[2]pyridine[4]pyrrole (2) and cyclo[6]pyrrole 3, an all-pyrrole 22 π-electron aromatic expanded porphyrin. The oxidized, dianionic form of 1, [1 - 4H](2-), has been characterized as its uranyl complex. In contrast to 2 and 3 and in spite of the presence of a 2,6-disubstituted pyridine subunit, the uranyl complex of [1 - 4H](2-) displays solid-state structural and solution-phase spectroscopic features consistent with contributions to the overall electronic structure that involve a conjugated, (4n + 2) π-electron aromatic periphery.

15.
J Am Chem Soc ; 136(29): 10410-7, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24967663

RESUMO

The effect of ionic species on the binding of fullerenes (C60 and C70) by tetrathiafulvalene-calix[4]pyrrole (TTF-C4P) receptors and the nature of the resulting supramolecular complexes (TTF-C4P + fullerene + halide anion + tetraalkylammonium cation) was studied in the solid state through single crystal X-ray diffraction methods and in dichloromethane solution by means of continuous variation plots and UV-vis spectroscopic titrations. These analyses revealed a 1:1 stoichiometry between the anion-bound TTF-C4Ps and the complexed fullerenes. The latter guests are bound within the bowl-like cup of the C4P in a ball-and-socket binding mode. The interactions between the TTF-C4P receptors and the fullerene guests are highly influenced by both the nature of halide anions and their counter tetraalkylammonium cations. Three halides (F(-), Cl(-), and Br(-)) were studied. All three potentiate the binding of the two test fullerenes by inducing a conformational change from the 1,3-alternate to the cone conformer of the TTF-C4Ps, thus acting as positive heterotropic allosteric effectors. For a particular halide anion, the choice of tetraalkylammonium salts serves to modulate the strength of the TTF-C4P-fullerene host-guest binding interactions and, in conjunction with variations in the halide anion, can be exploited to alter the inherent selectivity of the host for a given fullerene. Differences in binding are reflected in the excited state optical properties. Overall, the present four-component system provides an illustration of how host-guest binding events involving appropriately designed artificial receptors can be fine-tuned via the addition of simple ionic species as allosteric modulators.


Assuntos
Calixarenos/química , Fulerenos/química , Regulação Alostérica , Sítio Alostérico , Ânions/química , Cátions/química , Cristalografia por Raios X , Hidrocarbonetos Halogenados/química , Cloreto de Metileno/química , Modelos Moleculares , Compostos de Amônio Quaternário/química
16.
Chemistry ; 20(25): 7698-705, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24805261

RESUMO

A cross-conjugated hexaphyrin that carries two meso-oxacyclohexadienylidenyl (OCH) groups 9 was synthesized from the condensation of 5,10-bis(pentafluorophenyl)tripyrrane with 3,5-di-tert-butyl-4-hydroxybenzaldehyde. The reduction of 9 with NaBH4 afforded the Möbius aromatic [28]hexaphyrin 10. Bis-rhodium complex 11, prepared from the reaction of 10 with [{RhCl(CO)2}2], displays strong Hückel antiaromatic character because of the 28 π electrons that occupy the conjugated circuit on the enforced planar structure. The oxidation of 11 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded complexes 12 and 13 depending upon the reaction conditions. Both 12 and 13 are planar owing to bis-rhodium metalation. Although complex 12 bears two meso-OCH groups at the long sides and is quinonoidal and nonaromatic in nature, complex 13 bears 3,5-di-tert-butyl-4-hydroxyphenyl and OCH groups and exhibits a moderate diatropic ring current despite its cross-conjugated electronic circuit. The diatropic ring current increases upon increasing the solvent polarity, most likely due to an increased contribution of an aromatic zwitterionic resonance hybrid.

17.
Angew Chem Int Ed Engl ; 53(48): 13169-73, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25258332

RESUMO

Reductive metalation of [44]decaphyrin with [Pd2(dba)3] provided a Hückel aromatic [46]decaphyrin Pd(II) complex, which was readily oxidized upon treatment with DDQ to produce a Hückel antiaromatic [44]decaphyrin Pd(II) complex. In CH2Cl2 solution the latter complex underwent slow tautomerization to a Möbius aromatic [44]decaphyrin Pd(II) complex which exists as a mixture of conformers in dynamic equilibrium. To the best of our knowledge, these three Pd(II) complexes represent the largest Hückel aromatic, Hückel antiaromatic, and Möbius aromatic complexes to date.

18.
Angew Chem Int Ed Engl ; 53(6): 1506-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24474697

RESUMO

The treatment of an antiaromatic norcorrole Ni(II) complex with a kinetically stabilized silylene provided ring-expansion products in excellent yields through the highly regio- and stereoselective insertion into the ß-ß pyrrolic CC bonds. The resultant Ni(II) porphyrinoid monoinsertion product exhibited relatively strong near-IR absorption bands due to the small HOMO-LUMO gap in spite of the disrupted cyclic π-conjugation by the silicon atom.

19.
J Am Chem Soc ; 135(16): 6363-71, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23560651

RESUMO

p-Quinodimethane (p-QDM) is a fundamental building block for the design of π-conjugated systems with low band gap and open-shell biradical character. However, synthesis of extended p-QDMs has usually suffered from their intrinsic high reactivity and poor solubility. In this work, benzannulation together with terminal cyano-substitution was demonstrated to be an efficient approach for the synthesis of a series of soluble and stable tetracyano-oligo(N-annulated perylene)quinodimethanes nPer-CN (n = 1-6), with the longest molecule having 12 para-linked benzenoid rings! The geometry and electronic structures of these oligomers were investigated by steady-state and transient absorption spectroscopy, nuclear magnetic resonance, electron spin resonance, superconducting quantum interference device, and FT Raman spectroscopy assisted by density functional theory calculations. They showed tunable ground states, varying from a closed-shell quinoidal structure for monomer, to a singlet biradical for dimer, trimer, and tetramer, and to a triplet biradical for pentamer and hexamer. Large two-photon absorption cross-section values were observed in the near-infrared range, which also exhibited a clear chain-length dependence.

20.
Chemistry ; 19(1): 338-49, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23180557

RESUMO

A series of tetrathiafulvalene (TTF)-annulated porphyrins, and their corresponding Zn(II) complexes, have been synthesized. Detailed electrochemical, photophysical, and theoretical studies reveal the effects of intramolecular charge-transfer transitions that originate from the TTF fragments to the macrocyclic core. The incremental synthetic addition of TTF moieties to the porphyrin core makes the species more susceptible to these charge-transfer (CT) effects as evidenced by spectroscopic studies. On the other hand, regular positive shifts in the reduction signals are seen in the square-wave voltammograms as the number of TTF subunits increases. Structural studies that involve the tetrakis-substituted TTF-porphyrin (both free-base and Zn(II) complex) reveal only modest deviations from planarity. The effect of TTF substitution is thus ascribed to electronic overlap between annulated TTF subunits rather than steric effects. The directly linked thiafulvalene subunits function as both π acceptors as well as σ donors. Whereas σ donation accounts for the substituent-dependent charge-transfer transitions, it is the π-acceptor nature of the appended tetrathiafulvalene groups that dominates the redox chemistry. Interactions between the subunits are also reflected in the square-wave voltammograms. In the case of the free-base derivatives that bear multiple TTF subunits, the neighboring TTF units, as well as the TTF(⋅+) generated through one-electron oxidation, can interact with each other; this gives rise to multiple signals in the square-wave voltammograms. On the other hand, after metalation, the electronic communication between the separate TTF moieties becomes restricted and they act as separate redox centers under conditions of oxidation. Thus only two signals, which correspond to TTF(⋅+) and TTF(2+), are observed. The reduction potentials are also seen to shift towards more negative values after metalation, a finding that is considered to reflect an increased HOMO-LUMO gap. To probe the excited-state dynamics and internal CT character, transient absorption spectral studies were performed. These analyses revealed that all the TTF-porphyrins of this study display relatively short excited-state lifetimes, which range from 1 to 20 ps. This reflects a very fast decay to the ground state and is consistent with the proposed intramolecular charge-transfer effects inferred from the ground-state studies. Complementary DFT calculations provide a mechanistic rationale for the electron flow within the TTF-porphyrins and support the proposed intramolecular charge-transfer interactions and π-acceptor effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA