Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(5): 1066-1077.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245450

RESUMO

The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.


Assuntos
Núcleo Celular , Complexo Piruvato Desidrogenase , Acetilcoenzima A/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Laminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membrana Nuclear/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo
2.
Cell ; 158(1): 84-97, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995980

RESUMO

DNA transcription, replication, and repair are regulated by histone acetylation, a process that requires the generation of acetyl-coenzyme A (CoA). Here, we show that all the subunits of the mitochondrial pyruvate dehydrogenase complex (PDC) are also present and functional in the nucleus of mammalian cells. We found that knockdown of nuclear PDC in isolated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of core histones. Nuclear PDC levels increased in a cell-cycle-dependent manner and in response to serum, epidermal growth factor, or mitochondrial stress; this was accompanied by a corresponding decrease in mitochondrial PDC levels, suggesting a translocation from the mitochondria to the nucleus. Inhibition of nuclear PDC decreased acetylation of specific lysine residues on histones important for G1-S phase progression and expression of S phase markers. Dynamic translocation of mitochondrial PDC to the nucleus provides a pathway for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regulation.


Assuntos
Acetilcoenzima A/biossíntese , Núcleo Celular/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Epigênese Genética , Histonas/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Transporte Proteico
3.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38860363

RESUMO

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Assuntos
Insuficiência Cardíaca , Histonas , Camundongos Transgênicos , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Ubiquitinação , Animais , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Feminino , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Cultivadas , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regiões Promotoras Genéticas , Camundongos Endogâmicos C57BL
4.
Circ Res ; 126(12): 1723-1745, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32216531

RESUMO

RATIONALE: Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these cells are understudied. OBJECTIVE: Examine the role of mitochondrial metabolism of RVfib in RV fibrosis in human and experimental pulmonary arterial hypertension. METHODS AND RESULTS: Male Sprague-Dawley rats received monocrotaline (MCT; 60 mg/kg) or saline. Drinking water containing no supplement or the PDK (pyruvate dehydrogenase kinase) inhibitor dichloroacetate was started 7 days post-MCT. At week 4, treadmill testing, echocardiography, and right heart catheterization were performed. The effects of PDK activation on mitochondrial dynamics and metabolism, RVfib proliferation, and collagen production were studied in RVfib in cell culture. Epigenetic mechanisms for persistence of the profibrotic RVfib phenotype in culture were evaluated. PDK expression was also studied in the RVfib of patients with decompensated RV failure (n=11) versus control (n=7). MCT rats developed pulmonary arterial hypertension, RV fibrosis, and RV failure. MCT-RVfib (but not left ventricular fibroblasts) displayed excess mitochondrial fission and had increased expression of PDK isoforms 1 and 3 that persisted for >5 passages in culture. PDK-mediated decreases in pyruvate dehydrogenase activity and oxygen consumption rate were reversed by dichloroacetate (in RVfib and in vivo) or siRNA targeting PDK 1 and 3 (in RVfib). These interventions restored mitochondrial superoxide and hydrogen peroxide production and inactivated HIF (hypoxia-inducible factor)-1α, which was pathologically activated in normoxic MCT-RVfib. Redox-mediated HIF-1α inactivation also decreased the expression of TGF-ß1 (transforming growth factor-beta-1) and CTGF (connective tissue growth factor), reduced fibroblast proliferation, and decreased collagen production. HIF-1α activation in MCT-RVfib reflected increased DNMT (DNA methyltransferase) 1 expression, which was associated with a decrease in its regulatory microRNA, miR-148b-3p. In MCT rats, dichloroacetate, at therapeutic levels in the RV, reduced phospho-pyruvate dehydrogenase expression, RV fibrosis, and hypertrophy and improved RV function. In patients with pulmonary arterial hypertension and RV failure, RVfib had increased PDK1 expression. CONCLUSIONS: MCT-RVfib manifest a DNMT1-HIF-1α-PDK-mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis. This epigenetic mitochondrial-metabolic pathway is a potential antifibrotic therapeutic target.


Assuntos
Epigênese Genética , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miofibroblastos/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Fibrose , Ventrículos do Coração/patologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Dinâmica Mitocondrial , Monocrotalina/toxicidade , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
BMC Cancer ; 20(1): 751, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787791

RESUMO

BACKGROUND: The survival rates of women with breast cancer have improved significantly over the last four decades due to advances in breast cancer early diagnosis and therapy. However, breast cancer survivors have an increased risk of cardiovascular complications following chemotherapy. While this increased risk of later occurring structural cardiac remodeling and/or dysfunction has largely been attributed to the cardiotoxic effects of breast cancer therapies, the effect of the breast tumor itself on the heart prior to cancer treatment has been largely overlooked. Thus, the objectives of this study were to assess the cardiac phenotype in breast cancer patients prior to cancer chemotherapy and to determine the effects of human breast cancer cells on cardiomyocytes. METHODS: We investigated left ventricular (LV) function and structure using cardiac magnetic resonance imaging in women with breast cancer prior to systemic therapy and a control cohort of women with comparable baseline factors. In addition, we explored how breast cancer cells communicate with the cardiomyocytes using cultured human cardiac and breast cancer cells. RESULTS: Our results indicate that even prior to full cancer treatment, breast cancer patients already exhibit relative LV hypertrophy (LVH). We further demonstrate that breast cancer cells likely contribute to cardiomyocyte hypertrophy through the secretion of soluble factors and that at least one of these factors is endothelin-1. CONCLUSION: Overall, the findings of this study suggest that breast cancer cells play a greater role in inducing structural cardiac remodeling than previously appreciated and that tumor-derived endothelin-1 may play a pivotal role in this process.


Assuntos
Neoplasias da Mama/complicações , Comunicação Celular/fisiologia , Endotelina-1/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Miócitos Cardíacos/fisiologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Endotelina-1/sangue , Feminino , Humanos , Hipertrofia/etiologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Comunicação Parácrina , Estudos Retrospectivos , Células Tumorais Cultivadas , Remodelação Ventricular
6.
Am J Respir Crit Care Med ; 198(1): 90-103, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29394093

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer-like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. OBJECTIVES: We hypothesized that mtHSP90 in PAH-PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. METHODS: Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria-targeted HSP90 inhibitor, was tested in fawn-hooded and monocrotaline rats. MEASUREMENTS AND MAIN RESULTS: We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH-PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH-PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH-PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn-hooded rat). CONCLUSIONS: Our data show for the first time that accumulation of mtHSP90 is a feature of PAH-PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.


Assuntos
Anti-Hipertensivos/uso terapêutico , Proteínas de Choque Térmico HSP90/análise , Proteínas de Choque Térmico HSP90/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Mitocôndrias/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Ratos
7.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691752

RESUMO

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Assuntos
Arritmias Cardíacas , Cardiomiopatia Hipertrófica Familiar , Morte Súbita , Desmossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Repressoras , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Bovinos , Linhagem Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Desmossomos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Filamentos Intermediários , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
8.
Am J Physiol Heart Circ Physiol ; 313(3): H479-H490, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687587

RESUMO

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report here, for the first time, that FoxO1 inhibition increases glucose oxidation in the isolated working mouse heart.


Assuntos
Metabolismo Energético , Proteína Forkhead Box O1/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Angiotensina II/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Dexametasona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Quinolonas/farmacologia , Interferência de RNA , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Transfecção
9.
Circ Res ; 116(1): 56-69, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25287062

RESUMO

RATIONALE: Right ventricular (RV) failure is a major cause of morbidity and mortality in pulmonary hypertension, but its mechanism remains unknown. Myocyte enhancer factor 2 (Mef2) has been implicated in RV development, regulating metabolic, contractile, and angiogenic genes. Moreover, Mef2 regulates microRNAs that have emerged as important determinants of cardiac development and disease, but for which the role in RV is still unclear. OBJECTIVE: We hypothesized a critical role of a Mef2-microRNAs axis in RV failure. METHODS AND RESULTS: In a rat pulmonary hypertension model (monocrotaline), we studied RV free wall tissues from rats with normal, compensated, and decompensated RV hypertrophy, carefully defined based on clinically relevant parameters, including RV systolic and end-diastolic pressures, cardiac output, RV size, and morbidity. Mef2c expression was sharply increased in compensating phase of RVH tissues but was lost in decompensation phase of RVH. An unbiased screening of microRNAs in our model resulted to a short microRNA signature of decompensated RV failure, which included the myocardium-specific miR-208, which was progressively downregulated as RV failure progressed, in contrast to what is described in left ventricular failure. With mechanistic in vitro experiments using neonatal and adult RV cardiomyocytes, we showed that miR-208 inhibition, as well as tumor necrosis factor-α, activates the complex mediator of transcription 13/nuclear receptor corepressor 1 axis, which in turn promotes Mef2 inhibition, closing a self-limiting feedback loop, driving the transition from compensating phase of RVH toward decompensation phase of RVH. In our model, serum tumor necrosis factor-α levels progressively increased with time while serum miR-208 levels decreased, mirroring its levels in RV myocardium. CONCLUSIONS: We describe an RV-specific mechanism for heart failure, which could potentially lead to new biomarkers and therapeutic targets.


Assuntos
Insuficiência Cardíaca/metabolismo , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição MEF2/biossíntese , MicroRNAs/biossíntese , Função Ventricular Direita/fisiologia , Animais , Células Cultivadas , Insuficiência Cardíaca/patologia , Hipertensão Pulmonar/patologia , Masculino , Miócitos Cardíacos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
10.
Circ Res ; 113(2): 126-36, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23652801

RESUMO

RATIONALE: Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²âºm levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE: We hypothesized that UCP2 deficiency reduces Ca²âºm in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS: Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²âº release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²âº-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS: This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Canais Iônicos/deficiência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Artéria Pulmonar/metabolismo , Animais , Células Cultivadas , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Camundongos , Camundongos Knockout , Mimetismo Molecular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Distribuição Aleatória , Proteína Desacopladora 2
11.
Circ Res ; 112(2): 347-54, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23233754

RESUMO

RATIONALE: Right ventricular (RV) function is the most important determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Endothelin (ET)-1 receptor antagonists (ERAs) are approved therapies for PAH. It is not known whether ERAs have effects on the RV, in addition to their vasodilating/antiproliferative effects in pulmonary arteries. OBJECTIVE: We hypothesized that the ET axis is upregulated in RV hypertrophy (RVH) and that ERAs have direct effects on the RV myocardium. METHODS AND RESULTS: RV myocardial samples from 34 patients with RVH were compared with 16 nonhypertrophied RV samples, and from rats with normal RV versus RVH attributable to PAH. Confocal immunohistochemistry showed that RVH myocardial ET type A (but not type B) receptor and ET-1 protein levels were increased compared with the nonhypertrophied RVs and positively correlated with the degree of RVH (RV thickness/body surface area; r(2)=0.838 and r(2)=0.818, respectively; P<0.01). These results were recapitulated in the rat model. In modified Langendorff perfusions, ERAs (BQ-123 and bosentan 10(-7,-6,-5) mol/L) decreased contractility in the hypertrophied, but not normal RV, in a dose-dependent manner (P<0.01). CONCLUSIONS: Patients and rats with PAH have an upregulation of the myocardial ET axis in RVH. This might be a compensatory mechanism to preserve RV contractility, as the afterload increases. ERAs use might potentially worsen RV function, and this could explain some of the peripheral edema noted clinically with these agents. Further studies are required to evaluate the effects of ERAs on the RV in patients with RVH and PAH.


Assuntos
Endotelina-1/biossíntese , Endotelinas/biossíntese , Hipertrofia Ventricular Direita/metabolismo , Receptor de Endotelina A/biossíntese , Regulação para Cima/fisiologia , Função Ventricular Direita , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Endotelinas/fisiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Receptor de Endotelina A/fisiologia , Função Ventricular Direita/fisiologia , Adulto Jovem
12.
Circulation ; 127(1): 115-25, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23149668

RESUMO

BACKGROUND: Evidence suggestive of endoplasmic reticulum (ER) stress in the pulmonary arteries of patients with pulmonary arterial hypertension has been described for decades but has never been therapeutically targeted. ER stress is a feature of many conditions associated with pulmonary arterial hypertension like hypoxia, inflammation, or loss-of-function mutations. ER stress signaling in the pulmonary circulation involves the activation of activating transcription factor 6, which, via induction of the reticulin protein Nogo, can lead to the disruption of the functional ER-mitochondria unit and the increasingly recognized cancer-like metabolic shift in pulmonary arterial hypertension that promotes proliferation and apoptosis resistance in the pulmonary artery wall. We hypothesized that chemical chaperones known to suppress ER stress signaling, like 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid, will inhibit the disruption of the ER-mitochondrial unit and prevent/reverse pulmonary arterial hypertension. METHODS AND RESULTS: PBA in the drinking water both prevented and reversed chronic hypoxia-induced pulmonary hypertension in mice, decreasing pulmonary vascular resistance, pulmonary artery remodeling, and right ventricular hypertrophy and improving functional capacity without affecting systemic hemodynamics. These results were replicated in the monocrotaline rat model. PBA and tauroursodeoxycholic acid improved ER stress indexes in vivo and in vitro, decreased activating transcription factor 6 activation (cleavage, nuclear localization, luciferase, and downstream target expression), and inhibited the hypoxia-induced decrease in mitochondrial calcium and mitochondrial function. In addition, these chemical chaperones suppressed proliferation and induced apoptosis in pulmonary artery smooth muscle cells in vitro and in vivo. CONCLUSIONS: Attenuating ER stress with clinically used chemical chaperones may be a novel therapeutic strategy in pulmonary hypertension with high translational potential.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Fenilbutiratos/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Colagogos e Coleréticos/metabolismo , Colagogos e Coleréticos/farmacologia , Doença Crônica , Modelos Animais de Doenças , Hipertensão Pulmonar/prevenção & controle , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Modelos Cardiovasculares , Fenilbutiratos/metabolismo , Circulação Pulmonar/efeitos dos fármacos , Circulação Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ácido Tauroquenodesoxicólico/metabolismo
14.
ASAIO J ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457627

RESUMO

Oxidative stress occurs during ex-situ heart perfusion (ESHP) and may negatively affect functional preservation of the heart. We sought to assess the status of key antioxidant enzymes during ESHP, and the effects of augmenting these antioxidants on the attenuation of oxidative stress and improvement of myocardial and endothelial preservation in ESHP. Porcine hearts were perfused for 6 hours with oxygen-derived free-radical scavengers polyethylene glycol (PEG)-catalase or PEG-superoxide dismutase (SOD) or with naive perfusate (control). The oxidative stress-related modifications were determined in the myocardium and coronary vasculature, and contractile function, injury, and endothelial integrity were compared between the groups. The activity of key antioxidant enzymes decreased and adding catalase and SOD restored the enzyme activity. Cardiac function and endothelial integrity were preserved better with restored catalase activity. Catalase and SOD both decreased myocardial injury and catalase reduced ROS production and oxidative modification of proteins in the myocardium and coronary vasculature. The activity of antioxidant enzymes decrease in ESHP. Catalase may improve the preservation of cardiac function and endothelial integrity during ESHP. While catalase and SOD may both exert cardioprotective effects, unbalanced SOD and catalase activity may paradoxically increase the production of reactive species during ESHP.

15.
JAMA Oncol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949926

RESUMO

Importance: Prostate-specific membrane antigen (PSMA) demonstrates overexpression in prostate cancer and correlates with tumor aggressiveness. PSMA positron emission tomography (PET) is superior to conventional imaging for the metastatic staging of prostate cancer per current research but studies of second-generation PSMA PET radioligands for locoregional staging are limited. Objective: To determine the accuracy of fluorine-18 PSMA-1007 PET/computed tomography (18F-PSMA-1007 PET/CT) compared to multiparametric magnetic resonance imaging (MRI) in the primary locoregional staging of intermediate-risk and high-risk prostate cancers. Design, Setting, and Participants: The Next Generation Trial was a phase 2 prospective validating paired cohort study assessing the accuracy of 18F-PSMA-1007 PET/CT and MRI for locoregional staging of prostate cancer, with results of histopathologic examination as the reference standard comparator. Radiologists, nuclear medicine physicians, and pathologists were blinded to preoperative clinical, pathology, and imaging data. Patients underwent all imaging studies and radical prostatectomies at 2 tertiary care hospitals in Alberta, Canada. Eligible participants included men with intermediate-risk or high-risk prostate cancer who consented to radical prostatectomy. Participants who underwent radical prostatectomy were included in the final analysis. Patients were recruited between March 2022 and June 2023, and data analysis occurred between July 2023 and December 2023. Exposures: All participants underwent both 18F-PSMA-1007 PET/CT and MRI within 2 weeks of one another and before radical prostatectomy. Main Outcomes and Measures: The primary outcome was the correct identification of the prostate cancer tumor stage by each imaging test. The secondary outcomes were correct identification of the dominant nodule, laterality, extracapsular extension, and seminal vesical invasion. Results: Of 150 eligible men with prostate cancer, 134 patients ultimately underwent radical prostatectomy (mean [SD] age at prostatectomy, 62.0 [5.7] years). PSMA PET was superior to MRI for the accurate identification of the final pathological tumor stage (61 [45%] vs 38 [28%]; P = .003). PSMA PET was also superior to MRI for the correct identification of the dominant nodule (126 [94%] vs 112 [83%]; P = .01), laterality (86 [64%] vs 60 [44%]; P = .001), and extracapsular extension (100 [75%] vs 84 [63%]; P = .01), but not for seminal vesicle invasion (122 [91%] vs 115 [85%]; P = .07). Conclusions and Relevance: In this phase 2 prospective validating paired cohort study, 18F-PSMA-1007 PET/CT was superior to MRI for the locoregional staging of prostate cancer. These findings support PSMA PET in the preoperative workflow of intermediate-risk and high-risk tumors.

16.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746936

RESUMO

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Doenças Autoimunes/genética , Linhagem Celular Tumoral
17.
JACC CardioOncol ; 5(5): 686-700, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37969640

RESUMO

Background: Although some cancer therapies have overt and/or subclinical cardiotoxic effects that increase subsequent cardiovascular risk in breast cancer patients, we have recently shown that the breast tumor itself can also induce cardiac hypertrophy through the activation of the endothelin system to contribute to cardiovascular risk. However, the extent to which the suppression of the activation of the endothelin system could improve cardiac remodeling in breast cancer patients has yet to be investigated. Objectives: We aimed to retrospectively assess the cardiac morphology/function in patients with breast cancer before receiving cancer chemotherapy and to investigate if the suppression of the activation of the endothelin system improves cardiac remodeling in a mouse model of breast cancer. Methods: Our study involved 28 previously studied women with breast cancer (including 24 after tumor resection) before receiving adjuvant therapy and 17 control healthy women. In addition, we explored how the endothelin system contributed to breast cancer-induced cardiac remodeling using a mouse model of breast cancer. Results: Our results indicate that before chemotherapy, breast cancer patients already exhibit relative cardiac remodeling and subclinical cardiac dysfunction, which was associated with the activation of the endothelin system. Importantly, our mouse data also show that the endothelin receptor blocker atrasentan significantly lessened cardiac remodeling and improved cardiac function in a preclinical model of breast cancer. Conclusions: Although our findings should be further examined in other preclinical/clinical models, our data suggest that endothelin receptor blockers may play a role in cardiac health in individuals with breast cancer. (Understanding and Treating Heart Failure With Preserved Ejection Fraction: Novel Mechanisms, Diagnostics and Potential Therapeutics [Alberta HEART]; NCT02052804 and Multidisciplinary Team Intervention in Cardio-Oncology [TITAN]; NCT01621659).

18.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187628

RESUMO

Rationale: Dynamin-related protein 1 (Drp1), a large GTPase, mediates mitochondrial fission. Increased Drp1-mediated fission permits accelerated mitosis, contributing to hyperproliferation of pulmonary artery smooth muscle cells (PASMC), which characterizes pulmonary arterial hypertension (PAH). We developed a Drp1 inhibitor, Drpitor1a, and tested its ability to regress PAH. Objectives: Assess Drpitor1a's efficacy and toxicity in: a)normal and PAH human PASMC (hPASMC); b)normal rats versus rats with established monocrotaline (MCT)-induced PAH. Methods: Drpitor1a's effects on recombinant and endogenous Drp1-GTPase activity, mitochondrial fission, and cell proliferation were studied in hPASMCs (normal=3; PAH=5). Drpitor1a's pharmacokinetics and tissue concentrations were measured (n=3 rats/sex). In a pilot study (n=3-4/sex/dose), Drpitor1a (1mg/kg/48-hours, intravenous) reduced adverse PA remodeling only in females. Consequently, we compared Drpitor1a to vehicle in normal (n=6 versus 8) and MCT-PAH (n=9 and 11) females, respectively. Drpitor1a treatment began 17-days post-MCT with echocardiography and cardiac catheterization performed 28-29 days post-MCT. Results: Drpitor1a inhibited recombinant and endogenous Drp1 GTPase activity, which was increased in PAH hPASMC. Drpitor1a inhibited mitochondrial fission and proliferation and induced apoptosis, in PAH hPASMC but not normal hPASMC. Drpitor1a tissue levels were higher in female versus male RVs. In MCT-PAH females, Drpitor1a regressed PA obstruction, lowered pulmonary vascular resistance, and improved RV function, without hematologic, renal, or hepatic toxicity. Conclusions: Drpitor1a inhibits Drp1 GTPase, reduces mitochondrial fission, and inhibits cell proliferation in PAH hPASMC. Drpitor1a caused no toxicity in MCT-PAH and had no significant effect on normal rats or hPASMCs. Drpitor1a is a potential PAH therapeutic which displays an interesting therapeutic sexual dimorphism.

19.
Arch Biochem Biophys ; 517(2): 111-22, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155115

RESUMO

A loop (residues 794-803) at the active site of ß-galactosidase (Escherichia coli) opens and closes during catalysis. The α and ß carbons of Ser-796 form a hydrophobic connection to Phe-601 when the loop is closed while a connection via two H-bonds with the Ser hydroxyl occurs with the loop open. ß-Galactosidases with substitutions for Ser-796 were investigated. Replacement by Ala strongly stabilizes the closed conformation because of greater hydrophobicity and loss of H-bonding ability while replacement with Thr stabilizes the open form through hydrophobic interactions with its methyl group. Upon substitution with Asp much of the defined loop structure is lost. The different open-closed equilibria cause differences in the stabilities of the enzyme·substrate and enzyme·transition state complexes and of the covalent intermediate that affect the activation thermodynamics. With Ala, large changes of both the galactosylation (k(2)) and degalactosylation (k(3)) rates occur. With Thr and Asp, the k(2) and k(3) were not changed as much but large ΔH(‡) and TΔS(‡) changes showed that the substitutions caused mechanistic changes. Overall, the hydrophobic and H-bonding properties of Ser-796 result in interactions strong enough to stabilize the open or closed conformations of the loop but weak enough to allow loop movement during the reaction.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Substituição de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Isopropiltiogalactosídeo/farmacologia , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nitrofenilgalactosídeos/farmacologia , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Eletricidade Estática , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA