Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 17(9): e1009880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529737

RESUMO

Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Simbiose/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Sepse/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Peixe-Zebra
2.
PLoS Pathog ; 17(3): e1009468, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788901

RESUMO

Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.


Assuntos
Parede Celular/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Virulência/fisiologia , Animais , Camundongos , Peptidoglicano/metabolismo , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Peixe-Zebra
3.
Antimicrob Agents Chemother ; 66(12): e0092622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409116

RESUMO

Bacterial pathogens are confronted with a range of challenges at the site of infection, including exposure to antibiotic treatment and harsh physiological conditions, that can alter the fitness benefits and costs of acquiring antibiotic resistance. Here, we develop an experimental system to recapitulate resistance gene acquisition by Staphylococcus aureus and test how the subsequent evolution of the resistant bacterium is modulated by antibiotic treatment and oxygen levels, both of which are known to vary extensively at sites of infection. We show that acquiring tetracycline resistance was costly, reducing competitive growth against the isogenic strain without the resistance gene in the absence of the antibiotic, for S. aureus under hypoxic but not normoxic conditions. Treatment with tetracycline or doxycycline drove the emergence of enhanced resistance through mutations in an RluD-like protein-encoding gene and duplications of tetL, encoding the acquired tetracycline-specific efflux pump. In contrast, evolutionary adaptation by S. aureus to hypoxic conditions, which evolved in the absence of antibiotics through mutations affecting gyrB, was impeded by antibiotic treatment. Together, these data suggest that the horizontal acquisition of a new resistance mechanism is merely a starting point for the emergence of high-level resistance under antibiotic selection but that antibiotic treatment constrains pathogen adaptation to other important environmental selective forces such as hypoxia, which in turn could limit the survival of these highly resistant but poorly adapted genotypes after antibiotic treatment is ended.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Tetraciclina/farmacologia , Hipóxia , Proteínas de Bactérias/genética
4.
PLoS Pathog ; 16(7): e1008672, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706832

RESUMO

Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level ß-lactam resistance (oxacillin MIC 2-4 µg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 µg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit ß) or rpoC (RNA polymerase subunit ß') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
5.
Sci Rep ; 13(1): 1188, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681703

RESUMO

Staphylococcus aureus is a human commensal and also an opportunist pathogen causing life threatening infections. During S. aureus disease, the abscesses that characterise infection can be clonal, whereby a large bacterial population is founded by a single or few organisms. Our previous work has shown that macrophages are responsible for restricting bacterial growth such that a population bottleneck occurs and clonality can emerge. A subset of phagocytes fail to control S. aureus resulting in bacterial division, escape and founding of microabscesses that can seed other host niches. Here we investigate the basis for clonal microabscess formation, using in vitro and in silico models of S. aureus macrophage infection. Macrophages that fail to control S. aureus are characterised by formation of intracellular bacterial masses, followed by cell lysis. High-resolution microscopy reveals that most macrophages had internalised only a single S. aureus, providing a conceptual framework for clonal microabscess generation, which was supported by a stochastic individual-based, mathematical model. Once a threshold of masses was reached, increasing the number of infecting bacteria did not result in greater mass numbers, despite enhanced phagocytosis. This suggests a finite number of permissive, phagocyte niches determined by macrophage associated factors. Increased understanding of the parameters of infection dynamics provides avenues for development of rational control measures.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Fagocitose , Macrófagos/microbiologia , Infecções Estafilocócicas/microbiologia , Fagócitos/microbiologia , Abscesso
6.
Front Microbiol ; 14: 1241249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711690

RESUMO

The spheroid bacterium Staphylococcus aureus is often used as a model of morphogenesis due to its apparently simple cell cycle. S. aureus has many cell division proteins that are conserved across bacteria alluding to common functions. However, despite intensive study, we still do not know the roles of many of these components. Here, we have examined the functions of the paralogues DivIVA and GpsB in the S. aureus cell cycle. Cells lacking gpsB display a more spherical phenotype than the wild-type cells, which is associated with a decrease in peripheral cell wall peptidoglycan synthesis. This correlates with increased localization of penicillin-binding proteins at the developing septum, notably PBPs 2 and 3. Our results highlight the role of GpsB as an apparent regulator of cell morphogenesis in S. aureus.

7.
ACS Chem Biol ; 17(12): 3298-3305, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36414253

RESUMO

Bacterial cell wall peptidoglycan is essential for viability, and its synthesis is targeted by antibiotics, including penicillin. To determine how peptidoglycan homeostasis controls cell architecture, growth, and division, we have developed novel labeling approaches. These are compatible with super-resolution fluorescence microscopy to examine peptidoglycan synthesis, hydrolysis, and the localization of the enzymes required for its biosynthesis (penicillin binding proteins (PBPs)). Synthesis of a cephalosporin-based fluorescent probe revealed a pattern of PBPs at the septum during division, supporting a model of dispersed peptidoglycan synthesis. Metabolic and hydroxylamine-based probes respectively enabled the synthesis of glycan strands and associated reducing termini of the peptidoglycan to be mapped. Foci and arcs of reducing termini appear as a result of both synthesis of glycan strands and glucosaminidase activity of the major peptidoglycan hydrolase, SagB. Our studies provide molecular level details of how essential peptidoglycan dynamics are controlled during growth and division.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Peptidoglicano/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Infecções Estafilocócicas/metabolismo , Microscopia de Fluorescência , Homeostase , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA