Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nucleic Acids Res ; 52(11): 6158-6170, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38567720

RESUMO

In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.


Assuntos
Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Histonas , Animais , Camundongos , Histonas/metabolismo , Cromatina/metabolismo , Transcrição Gênica , Zigoto/metabolismo , Técnicas de Silenciamento de Genes , Feminino
2.
J Reprod Dev ; 69(3): 178-182, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062716

RESUMO

Linker histone variants regulate higher-order chromatin structure and various cellular processes. It has been suggested that linker histone variant H1a loosens chromatin structure and activates transcription. However, its role in early mouse development remains to be elucidated. We investigated the functions of H1a during preimplantation development using H1a gene-deleted mice. Although H1a homozygous knockout (KO) mice were born without any abnormalities, the number of offspring were reduced when the mothers but not fathers were homozygous KO animals. Maternal H1a KO compromised development during the morula and blastocyst stages, but not differentiation of the inner cell mass or trophectoderm. Thus, maternal linker histone H1a is important in early development.


Assuntos
Blastocisto , Histonas , Camundongos , Animais , Histonas/genética , Desenvolvimento Embrionário/genética , Mórula , Cromatina
3.
Reproduction ; 164(2): 19-29, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666814

RESUMO

In brief: In oocytes, chromatin structure is loosened during their growth, which seems to be essential for the establishment of competence to accomplish the maturation and further development after fertilization. This paper shows that a linker histone variant, H1foo, is involved in the formation of loosened chromatin structure in growing oocytes. Abstract: During oogenesis, oocytes show a unique mode of division and gene expression patterns. Chromatin structure is thought to be involved in the regulation of these processes. In this study, we investigated the functions of linker histones, which modulate higher-order chromatin structure during oogenesis. Because H1foo is highly expressed in oocytes, we knocked down H1foo using siRNA and observed oocyte growth, maturation, and fertilization. However, H1foo knockdown had no effect on any of these processes. Overexpression of H1b or H1d, which has a high ability to condense chromatin and is expressed at a low level in oocytes, resulting in tightened chromatin and a decreased success rate of oocyte maturation. By contrast, overexpression of H1a, which is expressed at a high level in oocytes and has a low ability to compact chromatin, did not affect growth or maturation. Therefore, H1a, but not other variants, might compensate for the function of H1foo in H1foo-knockdown oocytes. These results implicate H1foo in the formation of loose chromatin structure, which is necessary for oocyte maturation. In addition, the low expression of somatic linker histone variants, for example, H1b and H1d, is important for loosened chromatin and meiotic progression.


Assuntos
Histonas , Oogênese , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Oogênese/genética
4.
Proc Natl Acad Sci U S A ; 115(29): E6780-E6788, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967139

RESUMO

In mice, transcription initiates at the mid-one-cell stage and transcriptional activity dramatically increases during the two-cell stage, a process called zygotic gene activation (ZGA). Associated with ZGA is a marked change in the pattern of gene expression that occurs after the second round of DNA replication. To distinguish ZGA before and after the second-round DNA replication, the former and latter are called minor and major ZGA, respectively. Although major ZGA are required for development beyond the two-cell stage, the function of minor ZGA is not well understood. Transiently inhibiting minor ZGA with 5, 6-dichloro-1-ß-d-ribofuranosyl-benzimidazole (DRB) resulted in the majority of embryos arresting at the two-cell stage and retention of the H3K4me3 mark that normally decreases. After release from DRB, at which time major ZGA normally occurred, transcription initiated with characteristics of minor ZGA but not major ZGA, although degradation of maternal mRNA normally occurred. Thus, ZGA occurs sequentially starting with minor ZGA that is critical for the maternal-to-zygotic transition.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Zigoto/metabolismo , Animais , Blastocisto/citologia , Diclororribofuranosilbenzimidazol/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Zigoto/citologia
5.
BMC Dev Biol ; 20(1): 19, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957956

RESUMO

BACKGROUND: Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. RESULTS: In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. CONCLUSIONS: Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.


Assuntos
Bombyx/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Diferenciação Sexual/genética , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Bombyx/genética , Feminino , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Proteínas de Insetos/genética , Masculino , Isoformas de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Especificidade da Espécie
6.
Nature ; 509(7502): 633-6, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24828047

RESUMO

The silkworm Bombyx mori uses a WZ sex determination system that is analogous to the one found in birds and some reptiles. In this system, males have two Z sex chromosomes, whereas females have Z and W sex chromosomes. The silkworm W chromosome has a dominant role in female determination, suggesting the existence of a dominant feminizing gene in this chromosome. However, the W chromosome is almost fully occupied by transposable element sequences, and no functional protein-coding gene has been identified so far. Female-enriched PIWI-interacting RNAs (piRNAs) are the only known transcripts that are produced from the sex-determining region of the W chromosome, but the function(s) of these piRNAs are unknown. Here we show that a W-chromosome-derived, female-specific piRNA is the feminizing factor of B. mori. This piRNA is produced from a piRNA precursor which we named Fem. Fem sequences were arranged in tandem in the sex-determining region of the W chromosome. Inhibition of Fem-derived piRNA-mediated signalling in female embryos led to the production of the male-specific splice variants of B. mori doublesex (Bmdsx), a gene which acts at the downstream end of the sex differentiation cascade. A target gene of Fem-derived piRNA was identified on the Z chromosome of B. mori. This gene, which we named Masc, encoded a CCCH-type zinc finger protein. We show that the silencing of Masc messenger RNA by Fem piRNA is required for the production of female-specific isoforms of Bmdsx in female embryos, and that Masc protein controls both dosage compensation and masculinization in male embryos. Our study characterizes a single small RNA that is responsible for primary sex determination in the WZ sex determination system.


Assuntos
Bombyx/genética , RNA Interferente Pequeno/genética , Caracteres Sexuais , Processos de Determinação Sexual/genética , Processamento Alternativo/genética , Animais , Sequência de Bases , Bombyx/embriologia , Mecanismo Genético de Compensação de Dose , Feminino , Masculino , Dados de Sequência Molecular , Cromossomos Sexuais/genética
7.
EMBO J ; 34(11): 1523-37, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25896510

RESUMO

Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3' processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Splicing de RNA/fisiologia , Transcrição Gênica/fisiologia , Zigoto/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Embrião de Mamíferos/citologia , Camundongos , Zigoto/citologia
8.
PLoS Genet ; 12(8): e1006203, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27579676

RESUMO

In Bombyx mori (B. mori), Fem piRNA originates from the W chromosome and is responsible for femaleness. The Fem piRNA-PIWI complex targets and cleaves mRNAs transcribed from the Masc gene. Masc encodes a novel CCCH type zinc-finger protein and is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. In the present study, several silkworm strains carrying a transgene, which encodes a Fem piRNA-resistant Masc mRNA (Masc-R), were generated. Forced expression of the Masc-R transgene caused female-specific lethality during the larval stages. One of the Masc-R strains weakly expressed Masc-R in various tissues. Females heterozygous for the transgene expressed male-specific isoform of the Bombyx homolog of insulin-like growth factor II mRNA-binding protein (ImpM) and Bmdsx. All examined females showed a lower inducibility of vitellogenin synthesis and exhibited abnormalities in the ovaries. Testis-like tissues were observed in abnormal ovaries and, notably, the tissues contained considerable numbers of sperm bundles. Homozygous expression of the transgene resulted in formation of the male-specific abdominal segment in adult females and caused partial male differentiation in female genitalia. These results strongly suggest that Masc is an important regulatory gene of maleness in B. mori.


Assuntos
Bombyx/genética , Proteínas de Ligação a DNA/genética , Proteínas de Insetos/genética , Fator de Crescimento Insulin-Like II/genética , RNA Interferente Pequeno/genética , Processos de Determinação Sexual/genética , Animais , Animais Geneticamente Modificados , Bombyx/crescimento & desenvolvimento , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/biossíntese , Fator de Crescimento Insulin-Like II/biossíntese , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Splicing de RNA/genética , RNA Interferente Pequeno/biossíntese , Cromossomos Sexuais/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Vitelogeninas/biossíntese , Vitelogeninas/genética
9.
Biochem Biophys Res Commun ; 500(3): 583-588, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29665362

RESUMO

During oogenesis, oocytes prepare for embryonic development following fertilization. The mechanisms underlying this process are still unknown. Recently, it has been suggested that a loosened chromatin structure is involved in pluripotency and totipotency in embryonic stem (ES) cells and early preimplantation embryos, respectively. Here, we explored chromatin looseness in oocytes by fluorescence recovery after photobleaching (FRAP) using enhanced green fluorescent protein-tagged histone H2B. The results indicated that the chromatin in growing oocytes was already highly loosened to a level comparable to that in early preimplantation embryos. To elucidate the mechanism underlying the loosened chromatin structure in oocytes, we focused on chromodomain helicase DNA binding protein 9 (Chd9), which is highly expressed in growing oocytes. The oocytes from Chd9 knockout mice (Chd9-/-) generated using the CRISPR/Cas9 system exhibited a less loosened chromatin structure than that of wild-type mice, suggesting that Chd9 is involved in the loosened chromatin structure in growing oocytes. These results suggest that a loosened chromatin structure, which is mediated by Chd9, is a prerequisite for the acquisition of totipotency after fertilization.


Assuntos
Cromatina/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Proliferação de Células , DNA Helicases , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transativadores/deficiência
10.
J Reprod Dev ; 62(1): 87-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26599803

RESUMO

In mice, transcription from the zygotic genome is initiated at the mid-1-cell stage after fertilization. Although a recent high-throughput sequencing (HTS) analysis revealed that this transcription occurs promiscuously throughout almost the entire genome in 1-cell stage embryos, a detailed investigation of this process has yet to be conducted using protein-coding genes. Thus, the present study utilized previous RNA sequencing (RNAseq) data to determine the characteristics and regulatory regions of genes transcribed at the 1-cell stage. While the expression patterns of protein-coding genes of mouse embryos were very different at the 1-cell stage than at other stages and in various tissues, an analysis for the upstream and downstream regions of actively expressed genes did not reveal any elements that were specific to 1-cell stage embryos. Therefore, the unique gene expression pattern observed at the 1-cell stage in mouse embryos appears to be governed by mechanisms independent of a specific promoter element.


Assuntos
Blastocisto/citologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Análise por Conglomerados , Ilhas de CpG , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Camundongos , Oócitos/citologia , Fenótipo , Filogenia , Placenta/metabolismo , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma , Zigoto/metabolismo
11.
J Insect Biotechnol Sericology ; 85(1): 15-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28943775

RESUMO

The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori, little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.

12.
Dev Genes Evol ; 225(3): 161-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25868907

RESUMO

The transformer (tra) gene is an intermediate component of the sex determination hierarchy in many insect species. The homolog of tra is also found in two branchiopod crustacean species but is not known outside arthropods. We have isolated a tra homolog in the acorn worm, Saccoglossus kowalevskii, which is a hemichordate belonging to the deuterostome superphylum. The full-length complementary DNA (cDNA) of the S. kowalevskii tra homolog (Sktra) has a 3786-bp open reading frame that encodes a 1261-amino acid sequence including a TRA-CAM domain and an arginine/serine (RS)-rich domain, both of which are characteristic of TRA orthologs. Reverse transcription PCR (RT-PCR) analyses demonstrated that Sktra showed no differences in expression patterns between testes and ovaries, but its expression level was approximately 7.5-fold higher in the testes than in the ovaries. TRA, together with the protein product of the transformer-2 (tra-2) gene, assembles on doublesex (dsx) pre-messenger RNA (mRNA) via the cis-regulatory element, enhancing female-specific splicing of dsx in Drosophila. To understand functional conservation of the SkTRA protein as a dsx-splicing activator, we investigated whether SkTRA is capable of inducing female-specific splicing of the Drosophila dsx. Ectopic expression of Sktra cDNA in insect cultured cells did not induce the female-specific splicing of dsx. On the other hand, forced expression of Sktra-2 (a tra-2 homolog of S. kowalevskii) was able to induce the female-specific dsx splicing. These results demonstrate that the function as a dsx-splicing activator is not conserved in SkTRA even though SkTRA-2 is capable of functionally replacing the Drosophila TRA-2. We have also found a tra homolog in an echinoderm genome. This study provides the first evidence that that tra is conserved not only in arthropods but also in basal species of deuterostoms.


Assuntos
Eucariotos/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Bombyx/citologia , Bombyx/genética , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Eucariotos/classificação , Eucariotos/metabolismo , Feminino , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ovário/metabolismo , Filogenia , Alinhamento de Sequência , Testículo/metabolismo
13.
J Reprod Dev ; 61(3): 179-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25740253

RESUMO

Histone H2B monoubiquitination (H2Bub1) plays an important role in developmental regulation in various vertebrate species. However, the role of H2Bub1 in mammalian preimplantation development remains unclear. In the present study, we examined the role of H2Bub1 in the regulation of mouse preimplantation development. Based on immunocytochemical analysis using an anti-H2Bub1 antibody, no H2Bub1 signal was detected in the metaphase chromosomes of unfertilized oocytes or the pronuclei of early 1-cell stage embryos, but a weak signal was observed in late 1-cell stage embryos. The signal increased after cleavage into the 2-cell stage, and thereafter a strong signal was observed until the blastocyst stage. To assess the significance of H2Bub1 in the regulation of preimplantation development, RNF20 (an H2B-specific ubiquitin E3 ligase) was knocked down using small interfering RNA (siRNAs). In embryos treated with siRNA, the levels of Rnf20 mRNA and H2Bub1 decreased at the 4-cell and morula stages. Although these embryos developed normally until the morula stage, only one-third developed into the blastocyst stage. These results suggested that H2Bub1 is involved in the regulation of preimplantation development.


Assuntos
Blastocisto , Regulação da Expressão Gênica no Desenvolvimento , Histonas/fisiologia , Ubiquitina/química , Ubiquitinação , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Fase de Clivagem do Zigoto , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Imuno-Histoquímica , Masculino , Metáfase , Camundongos , Camundongos Endogâmicos ICR , Mórula/metabolismo , Oócitos/citologia , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Dev Genes Evol ; 224(2): 119-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24346480

RESUMO

In general, the master switch gene for sex determination is expressed for a limited period during the early embryonic stage. To increase our understanding of the sex determination mechanism in Bombyx mori, it is important to understand when sex determination takes place. To examine the key stages for sex determination in this insect, we focused on the expression patterns of Bmdsx (a double-switch gene in the sex determination cascade of B. mori) and BmIMP (a gene expressed specifically in males involved in male-specific splicing of Bmdsx). Reverse transcription PCR (RT-PCR) analysis revealed that male-type Bmdsx expression was observed in females at 27 and 29 h after oviposition (hao), and finally disappeared at 32 hao. Moreover, BmIMP mRNA was also expressed in these females, and its expression level was comparable to that of the male-type Bmdsx mRNA. These results demonstrated that female embryos before 32 hao can show male-type expression of Bmdsx and BmIMP, suggesting that sex determination occurs between 29 and 32 hao, which correspond to the developmental stages from the head lobe differentiation to spoon-shaped embryo stages. This also suggests that the master switch gene for sex determination of B. mori is expressed in females during this period and represses the male-specific mode of expression in sex-determining genes.


Assuntos
Bombyx/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Modelos Biológicos , Óvulo/metabolismo , Pigmentação/genética
15.
Int J Mol Sci ; 15(4): 6772-96, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24758924

RESUMO

Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity.


Assuntos
Bombyx/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Insetos/metabolismo , Processamento Alternativo , Animais , Bombyx/crescimento & desenvolvimento , Feminino , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Proteínas de Insetos/genética , Masculino , Metilação , Óvulo/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
16.
Cell Death Discov ; 10(1): 231, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744857

RESUMO

Phosphorylated H2AX, known as γH2AX, forms in response to genotoxic insults in somatic cells. Despite the high abundance of H2AX in zygotes, the level of irradiation-induced γH2AX is low at this stage. Another H2A variant, TH2A, is present at a high level in zygotes and can also be phosphorylated at its carboxyl end. We constructed H2AX- or TH2A-deleted mice using CRISPR Cas9 and investigated the role of these H2A variants in the DNA damage response (DDR) of zygotes exposed to γ-ray irradiation at the G2 phase. Our results showed that compared to irradiated wild-type zygotes, irradiation significantly reduced the developmental rates to the blastocyst stage in H2AX-deleted zygotes but not in TH2A-deleted ones. Furthermore, live cell imaging revealed that the G2 checkpoint was activated in H2AX-deleted zygotes, but the duration of arrest was significantly shorter than in wild-type and TH2A-deleted zygotes. The number of micronuclei was significantly higher in H2AX-deleted embryos after the first cleavage, possibly due to the shortened cell cycle arrest of damaged embryos and, consequently, the insufficient time for DNA repair. Notably, FRAP analysis suggested the involvement of H2AX in chromatin relaxation. Moreover, phosphorylated CHK2 foci were found in irradiated wild-type zygotes but not in H2AX-deleted ones, suggesting a critical role of these foci in maintaining cell cycle arrest for DNA repair. In conclusion, H2AX, but not TH2A, is involved in the DDR of zygotes, likely by creating a relaxed chromatin structure with enhanced accessibility for DNA repair proteins and by facilitating the formation of pCHK2 foci to prevent premature cleavage.

17.
Biochem Biophys Res Commun ; 441(4): 849-55, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24211206

RESUMO

Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Mariposas/enzimologia , Atrativos Sexuais/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ácidos Graxos Dessaturases/genética , Feminino , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Biol Reprod ; 89(6): 145, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132959

RESUMO

The global chromatin configuration is dramatically remodeled during fertilization and early preimplantation development. Although the chromocenters, which are pericentromeric heterochromatin clusters, are observed in the nuclei of oocytes, they disappear after fertilization and then reappear at the four-cell stage. To elucidate the mechanism of this reorganization of heterochromatin, we investigated the expression and nuclear localization of DOT1L, which is involved in the regulation of heterochromatin structure through histone H3 lysine 79 (H3K79) methyltransferase activity, during preimplantation development. The Dot1L mRNA level was low at the two-cell stage. In the analysis by the immunocytochemistry, DOT1L protein was not observed in the nuclei at this stage. Microinjection of Flag-tagged Dot1L cRNA revealed that the DOT1L protein was localized in the nucleus of the embryos at the one-cell and four-cell stages but not at the two-cell stage. However, C-terminus-truncated DOT1L was localized in the nucleus of two-cell-stage embryos. Expression of the truncated DOT1L caused hypermethylation on H3K79 and the formation of chromocenter-like structures at the two-cell stage. Intriguingly, the expression of catalytically inactive truncated DOT1L also caused the formation of chromocenter-like structures without an increase in H3K79 methylation. Most embryos expressing the truncated DOT1L or its inactive form were arrested at the two-cell stage. These results suggest that the absence of DOT1L, which is involved in the formation of a specific configuration of heterochromatin at the two-cell stage, is essential for early preimplantation development.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Desenvolvimento Embrionário/genética , Heterocromatina/genética , Metiltransferases/fisiologia , Animais , Blastocisto/metabolismo , Células Cultivadas , Fase de Clivagem do Zigoto/metabolismo , Feminino , Células HEK293 , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
19.
J Dev Biol ; 11(1)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976099

RESUMO

The sexual fate of honeybees is determined by the complementary sex determination (CSD) model: heterozygosity at a single locus (the CSD locus) determines femaleness, while hemizygosity or homozygosity at the CSD locus determines maleness. The csd gene encodes a splicing factor that regulates sex-specific splicing of the downstream target gene feminizer (fem), which is required for femaleness. The female mode of fem splicing occurs only when csd is present in the heteroallelic condition. To gain insights into how Csd proteins are only activated under the heterozygous allelic composition, we developed an in vitro assay system to evaluate the activity of Csd proteins. Consistent with the CSD model, the co-expression of two csd alleles, both of which lack splicing activity under the single-allele condition, restored the splicing activity that governs the female mode of fem splicing. RNA immunoprecipitation quantitative PCR analyses demonstrated that the CSD protein was specifically enriched in several exonic regions in the fem pre-mRNA, and enrichment in exons 3a and 5 was significantly greater under the heterozygous allelic composition than the single-allelic condition. However, in most cases csd expression under the monoallelic condition was capable of inducing the female mode of fem splicing contrary to the conventional CSD model. In contrast, repression of the male mode of fem splicing was predominant under heteroallelic conditions. These results were reproduced by real-time PCR of endogenous fem expression in female and male pupae. These findings strongly suggest that the heteroallelic composition of csd may be more important for the repression of the male splicing mode than for the induction of the female splicing mode of the fem gene.

20.
J Reprod Dev ; 58(5): 557-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785220

RESUMO

Differentiated oocytes acquire totipotency through fertilization. During this transition, genome-wide chromatin remodeling occurs, which leads to change in gene expression. However, the mechanism that underlies this global change in chromatin structure has not been fully elucidated. Histone variants play a key role in defining chromatin structure and are implicated in inheritance of epigenetic information. In this study, we analyzed the nuclear localization and expression of H3.1 to elucidate the role of this histone variant in chromatin remodeling during oogenesis and preimplantation development. Analysis using Flag-tagged H3.1 transgenic mice revealed that Flag-H3.1 was not present in differentiated oocytes or early preimplantation embryos before the morula stage, although Flag-H3.1 mRNA was expressed at all stages examined. In addition, the expression levels of endogenous H3.1 genes were low at the stages where H3.1 was not present in chromatin. These results suggest that H3.1 is not incorporated into chromatin due to the inactivity of the histone chaperone and low mRNA expression level. The significance of the dynamics of H3.1 is evaluated in terms of chromatin remodeling that takes place during development.


Assuntos
Núcleo Celular/metabolismo , Ectogênese , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Oócitos/metabolismo , Oogênese , Zigoto/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Feminino , Fertilização in vitro , Histonas/biossíntese , Histonas/genética , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Mórula/citologia , Mórula/metabolismo , Oócitos/citologia , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Zigoto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA