Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nano Lett ; 20(1): 585-591, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31851826

RESUMO

Chiro-sensitive molecular detection is highly relevant as many biochemical compounds, the building blocks of life, are chiral. Optical chirality is conventionally detected through circular dichroism (CD) in the UV range, where molecules naturally absorb. Recently, plasmonics has been proposed as a way to boost the otherwise very weak CD signal and translate it to the visible/NIR range, where technology is friendlier. Here, we explore how dielectric nanoresonators can contribute to efficiently differentiate molecular enantiomers. We study the influence of the detuning between electric (ED) and magnetic dipole (MD) resonances in silicon nanocylinders on the quality of the CD signal. While our experimental data, supported by numerical simulations, demonstrate that dielectric nanoresonators can perform even better than their plasmonic counterpart, exhibiting larger CD enhancements, we do not observe any significant influence of the optical chirality.

2.
Nano Lett ; 18(10): 6279-6285, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216716

RESUMO

Building blocks of life show well-defined chiral symmetry which has a direct influence on their properties and role in Nature. Chiral molecules are typically characterized by optical techniques such as circular dichroism (CD) where they exhibit signatures in the ultraviolet frequency region. Plasmonic nanostructures have the potential to enhance the sensitivity of chiral detection and translate the molecular chirality to the visible spectral range. Despite recent progress, to date, it remains unclear which properties plasmonic sensors should exhibit to maximize this effect and apply it to reliable enantiomer discrimination. Here, we bring further insight into this complex problem and present a chiral plasmonic sensor composed of a racemic mixture of gammadions with no intrinsic CD, but high optical chirality and electric field enhancements in the near-fields. Owing to its unique set of properties, this configuration enables us to directly differentiate phenylalanine enantiomers in the visible frequency range.

3.
Nano Lett ; 17(7): 4421-4426, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28616986

RESUMO

Nanophotonics has become a key enabling technology in biomedicine with great promises in early diagnosis and less invasive therapies. In this context, the unique capability of plasmonic noble metal nanoparticles to concentrate light on the nanometer scale has widely contributed to biosensing and enhanced spectroscopy. Recently, high-refractive index dielectric nanostructures featuring low loss resonances have been proposed as a promising alternative to nanoplasmonics, potentially offering better sensing performances along with full compatibility with the microelectronics industry. In this letter we report the first demonstration of biosensing with silicon nanoresonators integrated in state-of-the-art microfluidics. Our lab-on-a-chip platform enables detecting Prostate Specific Antigen (PSA) cancer marker in human serum with a sensitivity that meets clinical needs. These performances are directly compared with its plasmonic counterpart based on gold nanorods. Our work opens new opportunities in the development of future point-of-care devices toward a more personalized healthcare.

4.
Nano Lett ; 14(6): 3544-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24807397

RESUMO

We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

5.
Nano Lett ; 13(7): 3053-8, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23806090

RESUMO

We experimentally demonstrate that an incident light beam can be completely annihilated in a single layer of randomly distributed, widely spaced gold nanoparticle antennas. Under certain conditions, each antenna dissipates more than 10 times the number of photons that enter its geometric cross-sectional area. The underlying physics can be understood in terms of a critical coupling to localized plasmons in the nanoparticles or, equivalently, in terms of destructive optical Fano interference and so-called coherent absorption.

6.
Nano Lett ; 11(4): 1826-30, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21428275

RESUMO

Robust but ultrasensitive biosensors with a capability of detecting low abundance biomarkers could revolutionize clinical diagnostics and enable early detection of cancer, neurological diseases, and infections. We utilized a combination of localized surface plasmon resonance (LSPR) refractive index sensing and the well-known enzyme-linked immunosorbent assay to develop a simple colorimetric biosensing methodology with single molecule sensitivity. The technique is based on spectral imaging of a large number of isolated gold nanoparticles. Each particle binds a variable number of horseradish peroxidase (HRP) enzyme molecules that catalyze a localized precipitation reaction at the particle surface. The enzymatic reaction dramatically amplifies the shift of the LSPR scattering maximum, λ(max), and makes it possible to detect the presence of only one or a few HRP molecules per particle.


Assuntos
Técnicas Biossensoriais/instrumentação , Colorimetria/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Técnicas de Sonda Molecular/instrumentação , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
7.
Nano Lett ; 9(12): 4428-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19842703

RESUMO

We present a direct experimental comparison between the refractive index sensing capabilities of localized surface plasmon resonances (LSPRs) in gold nanodisks and propagating surface plasmon resonances (SPRs) on 50 nm gold films. The comparison is made using identical experimental conditions, and for the same resonance wavelength, lambda(SP) congruent with 700 nm. Biosensing experiments with biotin-avidin coupling reveal that the two sensing platforms have very similar performance, despite a superior bulk refractive index sensing figure of merit for the SPR sensor. The results demonstrate that LSPR sensing based on simple transmission or reflection measurements is a highly competitive technique compared to the traditional SPR sensor.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Imunoensaio/métodos , Nanopartículas/química , Nanotecnologia/métodos , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Nanopartículas/ultraestrutura , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
ACS Nano ; 13(4): 4582-4588, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30920797

RESUMO

High refractive index dielectric nanoresonators are attracting much attention due to their ability to control both electric and magnetic components of light. Due to the combination of confined modes with reduced absorption losses, they have recently been proposed as an alternative to nanoplasmonic biosensors. In this context, we study the use of semirandom silicon nanocylinder arrays, fabricated with simple and scalable colloidal lithography for the efficient and reliable detection of biomolecules in biological samples. Interestingly, electric and magnetic dipole resonances are associated with two different transduction mechanisms: extinction decrease and resonance red shift. By contrasting both observables, we identify clear advantages in tracking changes in the extinction magnitude. Our data demonstrate that, despite its simplicity, the proposed platform is able to detect prostate-specific antigen in human serum with limits of detection meeting clinical needs.

9.
Adv Mater ; 30(14): e1704237, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473231

RESUMO

Understanding the properties of novel solid-state quantum emitters is pivotal for a variety of applications in research fields ranging from quantum optics to biology. Recently discovered defects in hexagonal boron nitride are especially interesting, as they offer much desired characteristics such as narrow emission lines and photostability. Here, the dependence of the emission on the excitation wavelength is studied. It is found that, in order to achieve bright single-photon emission with high quantum efficiency, the excitation wavelength has to be matched to the emitter. This is a strong indication that the emitters possess a complex level scheme and cannot be described by a simple two or three-level system. Using this excitation dependence of the emission, further insight to the internal level scheme is gained and it is demonstrated how to distinguish different emitters both spatially as well as in terms of their photon correlations.

10.
Adv Mater ; 28(23): 4658-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27061280

RESUMO

A continuous-gradient approach of material evaporation is employed to fabricate nanostructures with varying geometric parameters, such as thickness, lateral positioning, and orientation on a single substrate. The method developed for mask lithography allows continuous tuning of the physical properties of a sample. The technique is highly valuable in simplifying the overall optimization process for constructing metasurfaces.

11.
Adv Mater ; 28(23): 4756, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27281049

RESUMO

A continuous-gradient approach of material evaporation is employed by L. Shao, M. Käll, and co-workers to fabricate nanostructures with varying geometric parameters such as thickness, lateral positioning, and orientation on a single substrate. This method for mask lithography, described on page 4658, allows continuous tuning of the physical properties of a sample. The technique is highly valuable in simplifying the overall optimization process for constructing metasurfaces.

12.
Nanoscale ; 8(3): 1305-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26676552

RESUMO

Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars. The substrate surface exhibits high droplet adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field.


Assuntos
Agentes Neurotóxicos/análise , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Humanos
13.
Nanoscale ; 7(21): 9405-10, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25952612

RESUMO

Nanoplasmonic substrates with optimized field-enhancement properties are a key component in the continued development of surface-enhanced Raman scattering (SERS) molecular analysis but are challenging to produce inexpensively in large scale. We used a facile and cost-effective bottom-up technique, colloidal hole-mask lithography, to produce macroscopic dimer-on-mirror gold nanostructures. The optimized structures exhibit excellent SERS performance, as exemplified by detection of 2.5 and 50 attograms of BPE, a common SERS probe, using Raman microscopy and a simple handheld device, respectively. The corresponding Raman enhancement factor is of the order 10(11), which compares favourably to previously reported record performance values.

14.
ACS Nano ; 8(9): 9286-94, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25182843

RESUMO

Quasicrystals are structures that possess long-range order without being periodic. We investigate the unique characteristics of a photonic quasicrystal that consists of plasmonic Ag nanodisks arranged in a Penrose pattern. The quasicrystal scatters light in a complex but spectacular diffraction pattern that can be directly imaged in the back focal plane of an optical microscope, allowing us to assess the excitation efficiency of the various diffraction modes. Furthermore, surface plasmon polaritons can be launched almost isotropically through near-field grating coupling when the quasicrystal is positioned close to a homogeneous silver surface. We characterize the dispersion relation of the different excited plasmon modes by reflection measurements and simulations. It is demonstrated that the quasicrystal in-coupling efficiency is strongly enhanced compared to a nanoparticle array with the same particle density but only short-range lateral order. We envision that the system can be useful for a number of advanced light harvesting and optoelectronic applications.

15.
ACS Nano ; 7(10): 8824-32, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24025047

RESUMO

Ultrasensitive biosensing is one of the main driving forces behind the dynamic research field of plasmonics. We have previously demonstrated that the sensitivity of single nanoparticle plasmon spectroscopy can be greatly enhanced by enzymatic amplification of the refractive index footprint of individual protein molecules, so-called plasmon-enhanced enzyme-linked immunosorbent assay (ELISA). The technique, which is based on generation of an optically dense precipitate catalyzed by horseradish peroxidase at the metal surface, allowed for colorimetric analysis of ultralow molecular surface coverages with a limit of detection approaching the single molecule limit. However, the plasmonic response induced by a single enzyme can be expected to vary for a number of reasons, including inhomogeneous broadening of the sensing properties of individual particles, variation in electric field enhancement over the surface of a single particle and variation in size and morphology of the enzymatic precipitate. In this report, we discuss how such inhomogeneities affect the possibility to quantify the number of molecules bound to a single nanoparticle. The discussion is based on simulations and measurements of large arrays of well-separated gold nanoparticles fabricated by electron beam lithography (EBL). The new data confirms the intrinsic single-molecule sensitivity of the technique but we were not able to clearly resolve the exact number of adsorbed molecules per single particle. The results indicate that the main sources of uncertainty come from variations in sensitivity across the surface of individual particles and between different particles. There is also a considerable uncertainty in the actual precipitate morphology produced by individual enzyme molecules. Possible routes toward further improvements of the methodology are discussed.


Assuntos
Elétrons , Ensaio de Imunoadsorção Enzimática/métodos , Microscopia de Força Atômica
16.
ACS Nano ; 6(8): 7533-9, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22808902

RESUMO

Layers of subwavelength metal nanostructures that support localized surface plasmon resonances are of broad interest in applied nanotechnology, for example, in optical sensor development and solar energy harvesting devices. We measured specular reflection spectra as a function of incidence angle for two-dimensional layers of gold nanodisks on glass and found highly asymmetric line-shapes and a spectral red-shift of up to 0.2 eV, or 10% of the plasmon resonance energy, as the angle changed from normal toward grazing incidence. This dramatic angular dispersion is the result of a tunable Fano interference between the spectrally narrow plasmon emission and a "white" continuum caused by the interface reflection. The data are found to be in excellent agreement with predictions based on a theory for Fresnel reflection coefficients of an interface with subwavelength inclusions. The theory can also be used to derive analytical expressions for the Fano parameters.


Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA