RESUMO
The design of biocatalytic reaction systems is highly complex owing to the dependency of the estimated kinetic parameters on the enzyme, the reaction conditions, and the modeling method. Consequently, reproducibility of enzymatic experiments and reusability of enzymatic data are challenging. We developed the XML-based markup language EnzymeML to enable storage and exchange of enzymatic data such as reaction conditions, the time course of the substrate and the product, kinetic parameters and the kinetic model, thus making enzymatic data findable, accessible, interoperable and reusable (FAIR). The feasibility and usefulness of the EnzymeML toolbox is demonstrated in six scenarios, for which data and metadata of different enzymatic reactions are collected and analyzed. EnzymeML serves as a seamless communication channel between experimental platforms, electronic lab notebooks, tools for modeling of enzyme kinetics, publication platforms and enzymatic reaction databases. EnzymeML is open and transparent, and invites the community to contribute. All documents and codes are freely available at https://enzymeml.org .
Assuntos
Gerenciamento de Dados , Metadados , Reprodutibilidade dos Testes , Bases de Dados Factuais , CinéticaRESUMO
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.
Assuntos
Biologia de Sistemas/métodos , Animais , Humanos , Modelos Logísticos , Modelos Biológicos , SoftwareRESUMO
The number of 'small' molecules that may be of interest to chemical biologists - chemical space - is enormous, but the fraction that have ever been made is tiny. Most strategies are discriminative, i.e. have involved 'forward' problems (have molecule, establish properties). However, we normally wish to solve the much harder generative or inverse problem (describe desired properties, find molecule). 'Deep' (machine) learning based on large-scale neural networks underpins technologies such as computer vision, natural language processing, driverless cars, and world-leading performance in games such as Go; it can also be applied to the solution of inverse problems in chemical biology. In particular, recent developments in deep learning admit the in silico generation of candidate molecular structures and the prediction of their properties, thereby allowing one to navigate (bio)chemical space intelligently. These methods are revolutionary but require an understanding of both (bio)chemistry and computer science to be exploited to best advantage. We give a high-level (non-mathematical) background to the deep learning revolution, and set out the crucial issue for chemical biology and informatics as a two-way mapping from the discrete nature of individual molecules to the continuous but high-dimensional latent representation that may best reflect chemical space. A variety of architectures can do this; we focus on a particular type known as variational autoencoders. We then provide some examples of recent successes of these kinds of approach, and a look towards the future.
Assuntos
Quimioinformática , Simulação por Computador , Aprendizado ProfundoRESUMO
Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.
Assuntos
Bactérias/metabolismo , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Benchmarking , Vias Biossintéticas , Indústria Química , Simulação por Computador , Fermentação , Ácidos Mandélicos/metabolismo , EstereoisomerismoRESUMO
In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.
Assuntos
Disciplinas das Ciências Biológicas/métodos , Biologia Computacional/métodos , Mineração de Dados/métodos , Design de Software , Software , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Disciplinas das Ciências Biológicas/tendências , Biologia Computacional/tendências , Mineração de Dados/estatística & dados numéricos , Mineração de Dados/tendências , Bases de Dados Factuais/estatística & dados numéricos , Bases de Dados Factuais/tendências , Previsões , Humanos , InternetRESUMO
Molecular similarity is an elusive but core "unsupervised" cheminformatics concept, yet different "fingerprint" encodings of molecular structures return very different similarity values, even when using the same similarity metric. Each encoding may be of value when applied to other problems with objective or target functions, implying that a priori none are "better" than the others, nor than encoding-free metrics such as maximum common substructure (MCSS). We here introduce a novel approach to molecular similarity, in the form of a variational autoencoder (VAE). This learns the joint distribution p(z|x) where z is a latent vector and x are the (same) input/output data. It takes the form of a "bowtie"-shaped artificial neural network. In the middle is a "bottleneck layer" or latent vector in which inputs are transformed into, and represented as, a vector of numbers (encoding), with a reverse process (decoding) seeking to return the SMILES string that was the input. We train a VAE on over six million druglike molecules and natural products (including over one million in the final holdout set). The VAE vector distances provide a rapid and novel metric for molecular similarity that is both easily and rapidly calculated. We describe the method and its application to a typical similarity problem in cheminformatics.
Assuntos
Quimioinformática/métodos , Modelos Moleculares , Estrutura Molecular , Algoritmos , Descoberta de DrogasRESUMO
Motivation: Synthetic biology is typified by developing novel genetic constructs from the assembly of reusable synthetic DNA parts, which contain one or more features such as promoters, ribosome binding sites, coding sequences and terminators. PartsGenie is introduced to facilitate the computational design of such synthetic biology parts, bridging the gap between optimization tools for the design of novel parts, the representation of such parts in community-developed data standards such as Synthetic Biology Open Language, and their sharing in journal-recommended data repositories. Consisting of a drag-and-drop web interface, a number of DNA optimization algorithms, and an interface to the well-used data repository JBEI ICE, PartsGenie facilitates the design, optimization and dissemination of reusable synthetic biology parts through an integrated application. Availability and implementation: PartsGenie is freely available at https://parts.synbiochem.co.uk.
Assuntos
DNA/análise , Software , Biologia Sintética , Algoritmos , DNA/químicaRESUMO
Summary: Synthetic biology applies the principles of engineering to biology in order to create biological functionalities not seen before in nature. One of the most exciting applications of synthetic biology is the design of new organisms with the ability to produce valuable chemicals including pharmaceuticals and biomaterials in a greener; sustainable fashion. Selecting the right enzymes to catalyze each reaction step in order to produce a desired target compound is, however, not trivial. Here, we present Selenzyme, a free online enzyme selection tool for metabolic pathway design. The user is guided through several decision steps in order to shortlist the best candidates for a given pathway step. The tool graphically presents key information about enzymes based on existing databases and tools such as: similarity of sequences and of catalyzed reactions; phylogenetic distance between source organism and intended host species; multiple alignment highlighting conserved regions, predicted catalytic site, and active regions and relevant properties such as predicted solubility and transmembrane regions. Selenzyme provides bespoke sequence selection for automated workflows in biofoundries. Availability and implementation: The tool is integrated as part of the pathway design stage into the design-build-test-learn SYNBIOCHEM pipeline. The Selenzyme web server is available at http://selenzyme.synbiochem.co.uk. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Redes e Vias Metabólicas , Software , Biologia Sintética/métodos , Bases de Dados Factuais , Enzimas/genética , Internet , FilogeniaRESUMO
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.
Assuntos
Cromatina/química , DNA/química , Engenharia Genética/métodos , Modelos Genéticos , Simbolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Desenho Assistido por Computador , Comportamento Cooperativo , DNA/metabolismo , Bases de Dados de Ácidos Nucleicos , Engenharia Genética/normas , Engenharia Genética/tendências , Humanos , Internet , Motivos de Nucleotídeos , Publicações , Sequências Reguladoras de Ácido Nucleico , SoftwareRESUMO
ChEBI is a database and ontology containing information about chemical entities of biological interest. It currently includes over 46,000 entries, each of which is classified within the ontology and assigned multiple annotations including (where relevant) a chemical structure, database cross-references, synonyms and literature citations. All content is freely available and can be accessed online at http://www.ebi.ac.uk/chebi. In this update paper, we describe recent improvements and additions to the ChEBI offering. We have substantially extended our collection of endogenous metabolites for several organisms including human, mouse, Escherichia coli and yeast. Our front-end has also been reworked and updated, improving the user experience, removing our dependency on Java applets in favour of embedded JavaScript components and moving from a monthly release update to a 'live' website. Programmatic access has been improved by the introduction of a library, libChEBI, in Java, Python and Matlab. Furthermore, we have added two new tools, namely an analysis tool, BiNChE, and a query tool for the ontology, OntoQuery.
Assuntos
Bases de Dados de Compostos Químicos , Metabolismo , Animais , Humanos , Metabolômica , Camundongos , SoftwareRESUMO
Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted.
Assuntos
Produtos Biológicos , Biologia Sintética , Biologia Computacional , Estrutura MolecularRESUMO
The Manchester Synthetic Biology Research Centre (SYNBIOCHEM) is a foundry for the biosynthesis and sustainable production of fine and speciality chemicals. The Centre's integrated technology platforms provide a unique capability to facilitate predictable engineering of microbial bio-factories for chemicals production. An overview of these capabilities is described.
Assuntos
Engenharia Metabólica , Biologia Sintética , Reino Unido , UniversidadesRESUMO
GeneGenie, a new online tool available at http://www.gene-genie.org, is introduced to support the design and self-assembly of synthetic genes and constructs. GeneGenie allows for the design of oligonucleotide cohorts encoding the gene sequence optimized for expression in any suitable host through an intuitive, easy-to-use web interface. The tool ensures consistent oligomer overlapping melting temperatures, minimizes the likelihood of misannealing, optimizes codon usage for expression in a selected host, allows for specification of forward and reverse cloning sequences (for downstream ligation) and also provides support for mutagenesis or directed evolution studies. Directed evolution studies are enabled through the construction of variant libraries via the optional specification of 'variant codons', containing mixtures of bases, at any position. For example, specifying the variant codon TNT (where N is any nucleotide) will generate an equimolar mixture of the codons TAT, TCT, TGT and TTT at that position, encoding a mixture of the amino acids Tyr, Ser, Cys and Phe. This facility is demonstrated through the use of GeneGenie to develop and synthesize a library of enhanced green fluorescent protein variants.
Assuntos
Evolução Molecular Direcionada/métodos , Genes Sintéticos , Oligonucleotídeos/química , Software , Algoritmos , Códon , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Internet , Análise de Sequência de ProteínaRESUMO
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Assuntos
Evolução Molecular Direcionada/métodos , Proteínas/química , Biologia Sintética/métodos , Sequência de Aminoácidos , Catálise , DNA/químicaRESUMO
Directed evolution of proteins is a highly effective strategy for tailoring biocatalysts to a particular application, and is capable of engineering improvements such as kcat, thermostability and organic solvent tolerance. It is recognized that large and systematic libraries are required to navigate a protein's vast and rugged sequence landscape effectively, yet their preparation is nontrivial and commercial libraries are extremely costly. To address this, we have developed SpeedyGenesXL, an automated, high-throughput platform for the production of wild-type genes, Boolean OR, combinatorial, or combinatorial-OR-type libraries based on the SpeedyGenes methodology. Together this offers a flexible platform for library synthesis, capable of generating many different bespoke, diverse libraries simultaneously.
Assuntos
Evolução Molecular Direcionada , Proteínas , Evolução Molecular Direcionada/métodos , Biblioteca GênicaRESUMO
EnzymeML is an XML-based data exchange format that supports the comprehensive documentation of enzymatic data by describing reaction conditions, time courses of substrate and product concentrations, the kinetic model, and the estimated kinetic constants. EnzymeML is based on the Systems Biology Markup Language, which was extended by implementing the STRENDA Guidelines. An EnzymeML document serves as a container to transfer data between experimental platforms, modeling tools, and databases. EnzymeML supports the scientific community by introducing a standardized data exchange format to make enzymatic data findable, accessible, interoperable, and reusable according to the FAIR data principles. An application programming interface in Python supports the integration of software tools for data acquisition, data analysis, and publication. The feasibility of a seamless data flow using EnzymeML is demonstrated by creating an EnzymeML document from a structured spreadsheet or from a STRENDA DB database entry, by kinetic modeling using the modeling platform COPASI, and by uploading to the enzymatic reaction kinetics database SABIO-RK.
Assuntos
Software , Biocatálise , Bases de Dados FactuaisRESUMO
Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic biology, metabolic engineering, and industrial biotechnology. The tools and workflows currently shared on the portal enables one to build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway design and engineering process from the selection of strains and targets, the design of DNA parts to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL are used throughout to enforce the compatibility of the tools. In a study carried out at four different sites, we illustrate the link between pathway design and engineering with the building of a library of E. coli lycopene-producing strains. We also benchmark our workflows on literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the validated pathways among the top 10 pathways generated by the workflows.
Assuntos
Escherichia coli , Biologia Sintética , Biotecnologia , Escherichia coli/genética , Engenharia Metabólica , SoftwareRESUMO
Absolute protein concentration determination is becoming increasingly important in a number of fields including diagnostics, biomarker discovery and systems biology modeling. The recently introduced quantification concatamer methodology provides a novel approach to performing such determinations, and it has been applied to both microbial and mammalian systems. While a number of software tools exist for performing analyses of quantitative data generated by related methodologies such as SILAC, there is currently no analysis package dedicated to the quantification concatamer approach. Furthermore, most tools that are currently available in the field of quantitative proteomics do not manage storage and dissemination of such data sets.
Assuntos
Proteoma/análise , Proteômica/métodos , Software , Proteínas Fúngicas/análise , Leveduras/enzimologiaRESUMO
The 'inverse problem' of mass spectrometric molecular identification ('given a mass spectrum, calculate/predict the 2D structure of the molecule whence it came') is largely unsolved, and is especially acute in metabolomics where many small molecules remain unidentified. This is largely because the number of experimentally available electrospray mass spectra of small molecules is quite limited. However, the forward problem ('calculate a small molecule's likely fragmentation and hence at least some of its mass spectrum from its structure alone') is much more tractable, because the strengths of different chemical bonds are roughly known. This kind of molecular identification problem may be cast as a language translation problem in which the source language is a list of high-resolution mass spectral peaks and the 'translation' a representation (for instance in SMILES) of the molecule. It is thus suitable for attack using the deep neural networks known as transformers. We here present MassGenie, a method that uses a transformer-based deep neural network, trained on ~6 million chemical structures with augmented SMILES encoding and their paired molecular fragments as generated in silico, explicitly including the protonated molecular ion. This architecture (containing some 400 million elements) is used to predict the structure of a molecule from the various fragments that may be expected to be observed when some of its bonds are broken. Despite being given essentially no detailed nor explicit rules about molecular fragmentation methods, isotope patterns, rearrangements, neutral losses, and the like, MassGenie learns the effective properties of the mass spectral fragment and valency space, and can generate candidate molecular structures that are very close or identical to those of the 'true' molecules. We also use VAE-Sim, a previously published variational autoencoder, to generate candidate molecules that are 'similar' to the top hit. In addition to using the 'top hits' directly, we can produce a rank order of these by 'round-tripping' candidate molecules and comparing them with the true molecules, where known. As a proof of principle, we confine ourselves to positive electrospray mass spectra from molecules with a molecular mass of 500Da or lower, including those in the last CASMI challenge (for which the results are known), getting 49/93 (53%) precisely correct. The transformer method, applied here for the first time to mass spectral interpretation, works extremely effectively both for mass spectra generated in silico and on experimentally obtained mass spectra from pure compounds. It seems to act as a Las Vegas algorithm, in that it either gives the correct answer or simply states that it cannot find one. The ability to create and to 'learn' millions of fragmentation patterns in silico, and therefrom generate candidate structures (that do not have to be in existing libraries) directly, thus opens up entirely the field of de novo small molecule structure prediction from experimental mass spectra.