Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Comput ; 34(7): 1501-1544, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35671462

RESUMO

Human perception and experience of time are strongly influenced by ongoing stimulation, memory of past experiences, and required task context. When paying attention to time, time experience seems to expand; when distracted, it seems to contract. When considering time based on memory, the experience may be different than what is in the moment, exemplified by sayings like "time flies when you're having fun." Experience of time also depends on the content of perceptual experience-rapidly changing or complex perceptual scenes seem longer in duration than less dynamic ones. The complexity of interactions among attention, memory, and perceptual stimulation is a likely reason that an overarching theory of time perception has been difficult to achieve. Here, we introduce a model of perceptual processing and episodic memory that makes use of hierarchical predictive coding, short-term plasticity, spatiotemporal attention, and episodic memory formation and recall, and apply this model to the problem of human time perception. In an experiment with approximately 13,000 human participants, we investigated the effects of memory, cognitive load, and stimulus content on duration reports of dynamic natural scenes up to about 1 minute long. Using our model to generate duration estimates, we compared human and model performance. Model-based estimates replicated key qualitative biases, including differences by cognitive load (attention), scene type (stimulation), and whether the judgment was made based on current or remembered experience (memory). Our work provides a comprehensive model of human time perception and a foundation for exploring the computational basis of episodic memory within a hierarchical predictive coding framework.


Assuntos
Memória Episódica , Percepção do Tempo , Humanos , Rememoração Mental , Tempo
2.
Nat Commun ; 12(1): 2020, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795665

RESUMO

Changes of Mind are a striking example of our ability to flexibly reverse decisions and change our own actions. Previous studies largely focused on Changes of Mind in decisions about perceptual information. Here we report reversals of decisions that require integrating multiple classes of information: 1) Perceptual evidence, 2) higher-order, voluntary intentions, and 3) motor costs. In an adapted version of the random-dot motion task, participants moved to a target that matched both the external (exogenous) evidence about dot-motion direction and a preceding internally-generated (endogenous) intention about which colour to paint the dots. Movement trajectories revealed whether and when participants changed their mind about the dot-motion direction, or additionally changed their mind about which colour to choose. Our results show that decision reversals about colour intentions are less frequent in participants with stronger intentions (Exp. 1) and when motor costs of intention pursuit are lower (Exp. 2). We further show that these findings can be explained by a hierarchical, multimodal Attractor Network Model that continuously integrates higher-order voluntary intentions with perceptual evidence and motor costs. Our model thus provides a unifying framework in which voluntary actions emerge from a dynamic combination of internal action tendencies and external environmental factors, each of which can be subject to Change of Mind.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA