Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Analyst ; 146(11): 3516-3525, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33881057

RESUMO

Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by ∼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.


Assuntos
Agregados Proteicos , Síncrotrons , Lipídeos , Proteínas , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Analyst ; 145(11): 3809-3813, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32400812

RESUMO

The effect of halogen substitution in fluorescent BODIPY species was evaluated in the context of staining lipids in situ within brain tissue sections. Herein we demonstrate that the halogenated species maintain their known in vitro affinity when applied to detect lipids in situ in brain tissue sections. Interestingly, the chlorine substituted compound revealed the highest specificify for white matter lipids. Furthermore, the halogen substituted compounds rapidly detected lipid enriched cells, in situ, associated with a case of brain pathology and neuroinflammation.


Assuntos
Compostos de Boro/química , Cerebelo/diagnóstico por imagem , Corantes Fluorescentes/química , Animais , Halogenação , AVC Isquêmico/diagnóstico por imagem , Masculino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência
3.
J Synchrotron Radiat ; 25(Pt 6): 1780-1789, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407190

RESUMO

Synchrotron X-ray fluorescence imaging enables visualization and quantification of microscopic distributions of elements. This versatile technique has matured to the point where it is used in a wide range of research fields. The method can be used to quantitate the levels of different elements in the image on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis are commonly used, namely, (i) integrative analysis, or window binning, which simply sums the numbers of all photons detected within a specific energy region of interest; and (ii) parametric analysis, or fitting, in which emission spectra are represented by the sum of parameters representing a series of peaks and other contributing factors. This paper presents a quantitative comparison between these two methods of image analysis using X-ray fluorescence imaging of mouse brain-tissue sections; it is shown that substantial errors can result when data from overlapping emission lines are binned rather than fitted. These differences are explored using two different digital signal processing data-acquisition systems with different count-rate and emission-line resolution characteristics. Irrespective of the digital signal processing electronics, there are substantial differences in quantitation between the two approaches. Binning analyses are thus shown to contain significant errors that not only distort the data but in some cases result in complete reversal of trends between different tissue regions.

4.
Neurobiol Dis ; 91: 132-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969531

RESUMO

Stroke is a major global health problem, with the prevalence and economic burden predicted to increase due to aging populations in western society. Following stroke, numerous biochemical alterations occur and damage can spread to nearby tissue. This zone of "at risk" tissue is termed the peri-infarct zone (PIZ). As the PIZ contains tissue not initially damaged by the stroke, it is considered by many as salvageable tissue. For this reason, much research effort has been undertaken to improve the identification of the PIZ and to elucidate the biochemical mechanisms that drive tissue damage in the PIZ in the hope of identify new therapeutic targets. Despite this effort, few therapies have evolved, attributed in part, to an incomplete understanding of the biochemical mechanisms driving tissue damage in the PIZ. Magnetic resonance imaging (MRI) has long been the gold standard to study alterations in gross brain structure, and is frequently used to study the PIZ following stroke. Unfortunately, MRI does not have sufficient spatial resolution to study individual cells within the brain, and reveals little information on the biochemical mechanisms driving tissue damage. MRI results may be complemented with histology or immuno-histochemistry to provide information at the cellular or sub-cellular level, but are limited to studying biochemical markers that can be successfully "tagged" with a stain or antigen. However, many important biochemical markers cannot be studied with traditional MRI or histology/histochemical methods. Therefore, we have developed and applied a multi-modal imaging platform to reveal elemental and molecular alterations that could not previously be imaged by other traditional methods. Our imaging platform incorporates a suite of spectroscopic imaging techniques; Fourier transform infrared imaging, Raman spectroscopic imaging, Coherent anti-stoke Raman spectroscopic imaging and X-ray fluorescence imaging. This approach does not preclude the use of traditional imaging techniques, and rather it should be use to complement traditional methods such as MRI or histology and immunohistochemistry, to gain a greater insight into disease mechanisms. We demonstrate the potential of this approach by characterizing biochemical alterations within the PIZ 24h after the induction of photothrombotic stroke in mice. Substantial molecular and elemental alterations were identified in the PIZ 24h after stroke that are consistent with tissue swelling and edema, but not oxidative stress. This reveals important mechanistic information, that could not previously be obtained, which should be considered in future studies aimed at developing therapeutic intervention from this model.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Processamento de Imagem Assistida por Computador , Estresse Oxidativo/fisiologia , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos BALB C , Doenças Neurodegenerativas
5.
Anal Chem ; 88(22): 10949-10956, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27690391

RESUMO

Imaging energy metabolites as markers of the energy shuttle between glia and neurons following ischemia is an ongoing challenge. Traditional microscopies in combination with histochemistry reveal glycogen accumulation within glia following ischemia, indicating an altered metabolic profile. Although semiquantitative histochemical glycogen analysis is possible, the method suffers from typical confounding factors common to histochemistry, such as variation in reagent penetration and binding. In addition, histochemical detection of glycogen does not reveal information on the metabolic fate of glycogen (i.e., lactate production). Therefore, validation of a direct semiquantitative method to simultaneously image both brain glycogen and lactate in the same tissue section would benefit this research field. In this study, we demonstrate the first application of Fourier transform infrared (FTIR) spectroscopy for simultaneous direct spectroscopic imaging of brain glycogen and lactate, in situ within ex vivo tissue sections. Serial tissue sections were analyzed with anti-glial fibrillary acidic protein (GFAP) immunohistochemistry to provide a comparison between the glycogen and lactate distribution revealed by FTIR and the glial distribution revealed by GFAP immunohistochemistry. The distribution of glycogen revealed by FTIR spectroscopic imaging has been further compared with histochemical detection of glycogen on the adjacent tissue sections. This approach was then applied to study spatiotemporal disturbances in metabolism, relative to glia and neuronal populations, following cerebral ischemia in a murine model of stroke.


Assuntos
Isquemia Encefálica/metabolismo , Glicogênio/análise , Ácido Láctico/análise , Neuroglia/metabolismo , Animais , Isquemia Encefálica/patologia , Glicogênio/metabolismo , Imuno-Histoquímica , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Environ Sci Technol ; 49(4): 2255-61, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607235

RESUMO

Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens.


Assuntos
Cristalino/metabolismo , Selênio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Feminino , Larva , Exposição Materna , Imagem Óptica , Espectroscopia por Absorção de Raios X , Peixe-Zebra
7.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743904

RESUMO

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Assuntos
Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Infarto da Artéria Cerebral Média/metabolismo , Homeostase/fisiologia , Acidente Vascular Cerebral/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Zinco/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Potássio/metabolismo , Cobre/metabolismo , Íons/metabolismo
8.
Biochim Biophys Acta Biomembr ; 1866(3): 184287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266967

RESUMO

Stroke represents a core area of study in neurosciences and public health due to its global contribution toward mortality and disability. The intricate pathophysiology of stroke, including ischemic and hemorrhagic events, involves the interruption in oxygen and nutrient delivery to the brain. Disruption of these crucial processes in the central nervous system leads to metabolic dysregulation and cell death. Fourier transform infrared (FTIR) spectroscopy can simultaneously measure total protein and lipid content along with a number of key biomarkers within brain tissue that cannot be observed using conventional techniques. FTIR imaging provides the opportunity to visualize this information in tissue which has not been chemically treated prior to analysis, thus retaining the spatial distribution and in situ chemical information. Here we present a review of FTIR imaging methods for investigating the biomarker responses in the post-stroke brain.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Acidente Vascular Cerebral/diagnóstico por imagem , Biomarcadores
9.
Metallomics ; 14(6)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35512669

RESUMO

Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.


Assuntos
Síncrotrons , Oligoelementos , Microscopia de Fluorescência/métodos , Estudos Prospectivos , Espectrometria por Raios X/métodos , Raios X
10.
Biochim Biophys Acta Biomembr ; 1863(5): 183573, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561476

RESUMO

Stroke is the second leading cause of death and the third leading cause of disability globally. Edema is a hallmark of stroke resulting from dysregulation of water homeostasis in the central nervous system (CNS) and plays the major role in stroke-associated morbidity and mortality. The overlap between cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema. Water balance in the brain is tightly regulated, primarily by aquaporin 4 (AQP4) channels, which are mainly expressed in perivascular astrocytic end-feet. Targeting AQP4 could be a useful therapeutic approach for treating brain edema; however, there is no approved drug for stroke treatment that can directly block AQP4. In this study, we demonstrate that the FDA-approved drug trifluoperazine (TFP) effectively reduces cerebral edema during the early acute phase in post-stroke mice using a photothrombotic stroke model. This effect was combined with an inhibition of AQP4 expression at gene and protein levels. Importantly, TFP does not appear to induce any deleterious changes on brain electrolytes or metabolic markers, including total protein or lipid levels. Our results support a possible role for TFP in providing a beneficial extra-osmotic effect on brain energy metabolism, as indicated by the increase of glycogen levels. We propose that targeting AQP4-mediated brain edema using TFP is a viable therapeutic strategy during the early and acute phase of stroke that can be further investigated during later stages to help in developing novel CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Trifluoperazina/uso terapêutico , Animais , Aquaporina 4/genética , Modelos Animais de Doenças , Glicogênio/química , Glicogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Agregados Proteicos , Acidente Vascular Cerebral/metabolismo
11.
Metallomics ; 12(12): 1979-1994, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33169753

RESUMO

8-Hydroxyquinolines (8HQs) comprise a family of metal-binding compounds that have been used or tested for use in numerous medicinal applications, including as treatments for bacterial infection, Alzheimer's disease, and cancer. Two key 8HQs, CQ (5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (2-(dimethylamino)methyl-5,7-dichloro-8-hydroxyquinoline), have drawn considerable interest and have been the focus of many studies investigating their in vivo properties. These drugs have been described as copper and zinc ionophores because they do not cause metal depletion, as would be expected for a chelation mechanism, but rather cellular accumulation of these ions. In studies of their anti-cancer properties, CQ has been proposed to elicit toxic intracellular copper accumulation and to trigger apoptotic cancer cell death through several possible pathways. In this study we used synchrotron X-ray fluorescence imaging, in combination with biochemical assays and light microscopy, to investigate 8HQ-induced alterations to metal ion homeostasis, as well as cytotoxicity and cell death. We used the bromine fluorescence from a bromine labelled CQ congener (5,7-dibromo-8-hydroxyquinoline; B2Q) to trace the intracellular localization of B2Q following treatment and found that B2Q crosses the cell membrane. We also found that 8HQ co-treatment with Cu(ii) results in significantly increased intracellular copper and significant cytotoxicity compared with 8HQ treatments alone. PBT2 was found to be more cytotoxic, but a weaker Cu(ii) ionophore than other 8HQs. Moreover, treatment of cells with copper in the presence of CQ or B2Q resulted in copper accumulation in the nuclei, while PBT2-guided copper was distributed near to the cell membrane. These results suggest that PBT2 may be acting through a different mechanism than that of other 8HQs to cause the observed cytotoxicity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/metabolismo , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imagem Óptica , Ratos , Espectrometria por Raios X
12.
ACS Chem Neurosci ; 9(5): 886-893, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29370523

RESUMO

Stroke exacts a heavy financial and economic burden, is a leading cause of death, and is the leading cause of long-term disability in those who survive. The penumbra surrounds the ischemic core of the stroke lesion and is composed of cells that are stressed and vulnerable to death, which is due to an altered metabolic, oxidative, and ionic environment within the penumbra. Without therapeutic intervention, many cells within the penumbra will die and become part of the growing infarct, however, there is hope that appropriate therapies may allow potential recovery of cells within this tissue region, or at least slow the rate of cell death, therefore, slowing the spread of the ischemic infarct and minimizing the extent of tissue damage. As such, preserving the penumbra to promote functional brain recovery is a central goal in stroke research. While identification of the ischemic infarct, and the infarct/penumbra boundary is relatively trivial using classical histology and microscopy techniques, accurately assessing the penetration of the penumbra zone into undamaged brain tissue, and evaluating the magnitude of chemical alterations in the penumbra, has long been a major challenge to the stroke research field. In this study, we have used synchrotron-based X-ray fluorescence imaging to visualize the elemental changes in undamaged, penumbra, and infarct brain tissue, following ischemic stroke. We have employed a Gaussian mixture model to cluster tissue areas based on their elemental characteristics. The method separates the core of the infarct from healthy tissue, and also demarcates discrete regions encircling the infarct. These regions of interest can be combined with elemental and metabolic data, as well as with conventional histology. The cell populations defined by clustering provide a reproducible means of visualizing the size and extent of the penumbra at the level of the single cell and provide a critically needed tool to track changes in elemental status and penumbra size.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Biomarcadores/análise , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Acidente Vascular Cerebral/fisiopatologia
13.
Metallomics ; 8(5): 514-7, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27108745

RESUMO

Mercury compounds are highly toxic; due to the rising levels of mercury pollution, both human and environmental exposure to mercury are increasing. Occupational exposure to inhaled mercury can be high, causing adverse effects not only in the lungs, but in the olfactory system as well. Olfaction plays a critical role in the survival of fish and other vertebrates, and impaired olfaction can substantially impact human quality of life. We present a study of the effects of mercury exposure in the olfactory pits of zebrafish larvae using a combination of X-ray fluorescence imaging and immunohistochemistry. We show that mercury accumulates in the sensory cells of the olfactory pits and also that it may also damage primary neurons, such as those that innervate olfactory pits.


Assuntos
Larva/efeitos dos fármacos , Mercúrio/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Espectrometria por Raios X , Peixe-Zebra/anatomia & histologia
14.
Metallomics ; 7(8): 1247-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26178186

RESUMO

The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.


Assuntos
Poluentes Ambientais/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Selênio/metabolismo , Peixe-Zebra/metabolismo , Animais , Poluentes Ambientais/análise , Larva/metabolismo , Larva/ultraestrutura , Mercúrio/análise , Compostos de Metilmercúrio/análise , Modelos Moleculares , Imagem Óptica , Selênio/análise
15.
J Inorg Biochem ; 151: 10-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26226450

RESUMO

In recent years larval stage zebrafish have been emerging as a standard vertebrate model in a number of fields, ranging from developmental biology to pharmacology and toxicology. The tyrosinase inhibitor 1-phenyl-2-thiourea (PTU) is used very widely with larval zebrafish to generate essentially transparent organisms through inhibition of melanogenesis, which has enabled many elegant studies in areas ranging from neurological development to cancer research. Here we show that PTU can have dramatic synergistic and antagonistic effects on the chemical toxicology of different mercury compounds. Our results indicate that extreme caution should be used when employing PTU in toxicological studies, particularly when studying toxic metal ions.


Assuntos
Compostos de Mercúrio/toxicidade , Feniltioureia/farmacologia , Fenômenos Toxicológicos/efeitos dos fármacos , Animais , Complexos de Coordenação/química , Ativação Enzimática/efeitos dos fármacos , Compostos de Mercúrio/química , Feniltioureia/química , Teoria Quântica , Peixe-Zebra
16.
Neurotoxicol Teratol ; 33(2): 313-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21167937

RESUMO

Pre-natal alcohol exposure induces delays in fine and gross motor skills, and deficiencies in reflex development via mechanisms that remain to be elucidated. The purpose of the present study was to investigate the effect of embryonic ethanol exposure (16-hour exposure window with 1.5%, 2% or 2.5% EtOH) on synaptic properties at the neuromuscular junction (NMJ) in 3 day post fertilization (dpf) zebrafish larvae. Immunohistochemical studies show that exposure of embryos to 2.5% ethanol for 16 h results in motor neuron axons that display abnormal branching patterns. Co-labelling embryos with pre-synaptic markers such as SV-2 or 3A10, and the post-synaptic marker, α-bungarotoxin, which irreversibly binds to nicotinic acetylcholine receptors (nAChRs), indicates that pre- and post-synaptic sites are properly aligned even when motor neuron axons display abnormal morphology. Miniature endplate currents (mEPCs) recorded from muscle fibers revealed the presence of two types of mEPCs that we dubbed fast and slow. Ethanol treated fish experienced significant changes in the frequencies of fast and slow mEPCs, and an increase in the rise time of slow mEPCs recorded from red muscle fibers. Additionally, embryonic exposure to ethanol resulted in a significant increase in the decay time of fast mEPCs recorded from white fibers. Mean mEPC amplitude was unaffected by ethanol treatment. Together, these results indicate that zebrafish embryos exposed to ethanol may experience altered synaptic properties at the NMJ.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Etanol/toxicidade , Junção Neuromuscular/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/fisiologia , Imuno-Histoquímica , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Junção Neuromuscular/embriologia , Junção Neuromuscular/fisiologia
17.
Neurotoxicol Teratol ; 32(4): 472-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20211721

RESUMO

Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Larva/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/embriologia , Larva/crescimento & desenvolvimento , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA