Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(2): e3002001, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745683

RESUMO

Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input-output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input-output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input-output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex.


Assuntos
Neocórtex , Humanos , Camundongos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/fisiologia , Interneurônios/fisiologia , Mamíferos
2.
Nature ; 557(7705): 375-380, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743677

RESUMO

The transcriptional programs that establish neuronal identity evolved to produce the rich diversity of neuronal cell types that arise sequentially during development. Remarkably, transient expression of certain transcription factors can also endow non-neural cells with neuronal properties. The relationship between reprogramming factors and the transcriptional networks that produce neuronal identity and diversity remains largely unknown. Here, from a screen of 598 pairs of transcription factors, we identify 76 pairs of transcription factors that induce mouse fibroblasts to differentiate into cells with neuronal features. By comparing the transcriptomes of these induced neuronal cells (iN cells) with those of endogenous neurons, we define a 'core' cell-autonomous neuronal signature. The iN cells also exhibit diversity; each transcription factor pair produces iN cells with unique transcriptional patterns that can predict their pharmacological responses. By linking distinct transcription factor input 'codes' to defined transcriptional outputs, this study delineates cell-autonomous features of neuronal identity and diversity and expands the reprogramming toolbox to facilitate engineering of induced neurons with desired patterns of gene expression and related functional properties.


Assuntos
Reprogramação Celular/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma/genética
3.
Traffic ; 22(12): 454-470, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34564930

RESUMO

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.


Assuntos
Hipocampo , Receptores de AMPA , Endocitose/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteína Quinase C , Receptores de AMPA/metabolismo , Sinapses/metabolismo
4.
Dev Neurosci ; 44(6): 508-517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35640552

RESUMO

Epilepsy is a commonly diagnosed neurological disease, which often develops already in childhood. The prominent feature of this dysfunction is the strong, unprovoked hypersynchronous neuronal activity of the brain, especially in the cortex, which appears in recurrent seizures. Previous studies indicated a potential modulatory role of kainate types of glutamate receptors in this mechanism. In our experiments, we used combined hippocampal-entorhinal rat brain slices of different ages. Developing (2-, 3-, and 4-week-old), adolescent (6-week-old), and adult (3-month-old) groups were investigated. During the experiments, first, we provoked convulsions with magnesium-free perfusion solution; then, to investigate the role of kainate receptors, seizure-like events (SLEs) were suppressed by applying a specific GluK1/2 antagonist (UBP-296). Neuronal network activity was recorded by a multi-electrode array chip, and temporal features of field potentials and single-cell activity were analyzed in the different age-groups. The frequency, duration of spontaneous events, the overall seizure characteristics, and spike activities were compared. Spontaneous events were categorized into interictal epileptiform discharges (IEDs) and SLEs on the basis of the temporal structure of activities. In 3- and 4-week-old animals, IEDs were observable, which entirely disappeared after the 4th week. The structure and the length of SLEs varied in the younger animals (3- and 4-week-old animals); however, after the 6th week, these events became more stabilized. In most groups, the count of detected spikes was significantly higher in layer II/III than in layer V. The neuronal networks started to behave like adult ones at 4 weeks of age. The length of events decreased in adult animals due to the maturation of the network, and the inhibition becomes stronger. The IEDs disappeared completely, and the SLEs became stable and stereotypic in 6-week-old animals. UBP-296 administration reduced the number of IEDs; however, this had no substantial effect on the SLEs.


Assuntos
Córtex Entorrinal , Ácido Caínico , Ratos , Animais , Ácido Caínico/farmacologia , Receptores de Ácido Caínico , Hipocampo , Convulsões
5.
PLoS Comput Biol ; 17(9): e1009378, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529674

RESUMO

Activity-dependent regulation of intrinsic excitability has been shown to greatly contribute to the overall plasticity of neuronal circuits. Such neuroadaptations are commonly investigated in patch clamp experiments using current step stimulation and the resulting input-output functions are analyzed to quantify alterations in intrinsic excitability. However, it is rarely addressed, how such changes translate to the function of neurons when they operate under natural synaptic inputs. Still, it is reasonable to expect that a strong correlation and near proportional relationship exist between static firing responses and those evoked by synaptic drive. We challenge this view by performing a high-yield electrophysiological analysis of cultured mouse hippocampal neurons using both standard protocols and simulated synaptic inputs via dynamic clamp. We find that under these conditions the neurons exhibit vastly different firing responses with surprisingly weak correlation between static and dynamic firing intensities. These contrasting responses are regulated by two intrinsic K-currents mediated by Kv1 and Kir channels, respectively. Pharmacological manipulation of the K-currents produces differential regulation of the firing output of neurons. Static firing responses are greatly increased in stuttering type neurons under blocking their Kv1 channels, while the synaptic responses of the same neurons are less affected. Pharmacological blocking of Kir-channels in delayed firing type neurons, on the other hand, exhibit the opposite effects. Our subsequent computational model simulations confirm the findings in the electrophysiological experiments and also show that adaptive changes in the kinetic properties of such currents can even produce paradoxical regulation of the firing output.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Biologia Computacional , Simulação por Computador , Sinapses Elétricas/fisiologia , Fenômenos Eletrofisiológicos , Hipocampo/citologia , Hipocampo/fisiologia , Cinética , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia
6.
J Environ Sci Health B ; 57(8): 636-643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833259

RESUMO

After an outbreak of cobweb disease of cultivated button mushroom in Serbia in 2003, the isolated fungal pathogen was initially identified as Cladobotryum dendroides (teleomorph Hypomyces rosellus) based on morpho-physiological traits. Molecular analysis indicated re-classification of two strains (isolated in 2004 and 2007) as Cladobotryum mycophilum (teleomorph Hypomyces odoratus). However, subsequent analysis of further five strains (isolated over the period 2003-2010) within the frames of the present study, also confirmed their identification as the exclusive cobweb causal agent C. mycophilum. After artificial inoculation, the symptoms observed on harvested and growing mushrooms were consistent with the appearance of cobweb disease. Pathogen sensitivity to fungicides was estimated by probit analyses. Fungicide susceptibility tests showed that C. mycophilum strains were highly sensitive both to prochloraz (ED50<0.087 µg mL-1) and the newly introduced metrafenone (ED50<0.15 µg mL-1). Furthermore, the growth of all examined strains of C. mycophilum was significantly inhibited by the indigenous actinobacterial strain Streptomyces flavovirens A06. A dual culture assay showed after 72 h that the percentage of radial growth inhibition of the pathogen ranged from 22.38 to 55.73%. Our findings suggest that the antagonistic S. flavovirens A06 might be a potential candidate for controlling the cobweb disease of cultivated button mushroom.


Assuntos
Actinobacteria , Agaricus , Fungicidas Industriais , Streptomyces , Benzofenonas , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Hypocreales , Imidazóis , Streptomyces/genética
7.
J Physiol ; 599(22): 4955-4971, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587656

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) has an essential role in maintaining pancreatic ductal function. Impaired CFTR function can trigger acute pancreatitis (AP) and exacerbate disease severity. We aimed to investigate the localization and expression of CFTR during AP, and determined the effects of a CFTR corrector (VX-661) and potentiator (VX-770) on disease severity. AP was induced in FVB/n mice by 6-10 hourly intraperitoneal injections of 50 µg/kg cerulein. Some mice were pre-treated with five to six daily injections of 2 mg/kg VX-661 + VX-770. Control animals were administered physiological saline instead of cerulein and dimethyl sulfoxide instead of VX compounds. AP severity was determined by measuring laboratory and histological parameters; CFTR and CK19 expression was measured. Activity of ion transporters was followed by intracellular pH or fluid secretion measurement of isolated pancreatic intra-/interlobular ducts. Cerulein-induced AP severity was greatest between 12 and 24 h. CFTR mRNA expression was significantly increased 24 h after AP induction. Immunohistochemistry demonstrated disturbed staining morphology of CFTR and CK19 proteins in AP. Mislocalization of CFTR protein was observed from 6 h, while expression increased at 24 h compared to control. Ductal HCO3- transport activity was significantly increased 6 h after AP induction. AP mice pre-treatment with VX-661 + VX-770 significantly reduced the extent of tissue damage by about 20-30%, but other parameters were unchanged. Interestingly, VX-661 + VX-770 in vitro administration significantly increased the fluid secretion of ducts derived from AP animals. This study described the course of the CFTR expression and mislocalization in cerulein-induced AP. Our results suggest that the beneficial effects of CFTR correctors and potentiators should be further investigated in AP. KEY POINTS: Cystic fibrosis transmembrane conductance regulator (CFTR) is an important ion channel in epithelial cells. Its malfunction has several serious consequences, like developing or aggravating acute pancreatitis (AP). Here, the localization and expression of CFTR during cerulein-induced AP in mice were investigated and the effects of CFTR corrector (VX-661) and a potentiator (VX-770) on disease severity were determined. CFTR mRNA expression was significantly increased and mislocalization of CFTR protein was observed in AP compared to the control group. Interestingly, pre-treatment of AP mice with VX-661 + VX-770 significantly reduced the extent of pancreatic tissue damage by 20-30%. In vitro administration of VX-661 + VX-770 significantly increased the fluid secretion of ducts derived from AP animals. Based on these results, the utilization of CFTR correctors and potentiators should be further investigated in AP.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Pancreatite , Doença Aguda , Aminofenóis , Aminopiridinas , Animais , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Indóis , Camundongos , Mutação , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Quinolonas , Índice de Gravidade de Doença
8.
World J Microbiol Biotechnol ; 37(6): 94, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963474

RESUMO

The application of plant growth-promoting bacteria in agricultural systems is an efficient and environment-friendly strategy to improve crop yields and maintain soil quality. However, as different soils have diverse and specific ecological characteristics and may represent adverse abiotic conditions, in vivo application requires the careful selection of the desired beneficial microorganisms. In this study we report Ensifer adhaerens SZMC 25856 and Pseudomonas resinovorans SZMC 25875 isolates recovered from glyphosate-treated soil to possess yet undiscovered plant growth-enhancing potential. The strains were found to promote the growth of tomato seedlings significantly, to have the ability of synthesizing indole-3-acetic acid and siderophores, to tolerate pH in the range of 6.59-7.96, salinity up to 12.5 g L-1 NaCl and drought up to 125 g L-1 polyethylene glycol 6000, as well as to survive in the presence of various pesticides including glyphosate, diuron, chlorotoluron, carbendazim and thiabendazole, and heavy metals such as Al, Fe, Mn, Zn, Pb and Cu. The plant growth-promoting traits of the examined E. adhaerens and P. resinovorans isolates and their tolerance to numerous abiotic stress factors make them promising candidates for application in different agricultural environments, including soils polluted with glyphosate.


Assuntos
Glicina/análogos & derivados , Pseudomonas/isolamento & purificação , Rhizobiaceae/isolamento & purificação , Solanum lycopersicum/crescimento & desenvolvimento , Glicina/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/microbiologia , Metais Pesados/farmacologia , Pseudomonas/metabolismo , Pseudomonas/fisiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/metabolismo , Rhizobiaceae/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Glifosato
9.
J Environ Sci Health B ; 56(1): 54-63, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33156729

RESUMO

Twenty-two strains of Trichoderma spp. (T. harzianum species complex [THSC], Trichoderma aggressivum f. europaeum, Trichoderma pleuroti, and Trichoderma pleuroticola) causing green mold disease on edible mushrooms (button mushroom, shiitake and oyster mushroom), collected during 2004-2018 from four countries (Serbia, North Macedonia, Croatia, and Hungary) were examined. Based on their ITS (internal transcribed spacer) sequences, strains from shiitake mushroom in Serbia were identified as members of the THSC, while in samples obtained from Serbian and North-Macedonian oyster mushroom farms THSC, T. pleuroti and T. pleuroticola were detected, which represent the first findings in the region. In fungicide susceptibility tests, all examined Trichoderma strains were found to be highly sensitive to prochloraz (ED50<0.4 µg mL-1) and considerably susceptible to metrafenone (ED50 < 4 µg mL-1). The most sensitive taxon to both fungicides was THSC from oyster mushroom. The toxicity of metrafenone was satisfying and strains from oyster mushroom showed the highest sensitivity (ED50 < 1.43 µg mL-1), while strains originating from button mushroom and shiitake displayed similar susceptibilities (ED50 < 3.64 µg mL-1). After additional in vivo trials, metrafenone might also be recommended for the control of green mold disease in mushroom farms.


Assuntos
Benzofenonas/farmacologia , Fungicidas Industriais/farmacologia , Imidazóis/farmacologia , Trichoderma/efeitos dos fármacos , Agaricus/efeitos dos fármacos , Agaricus/crescimento & desenvolvimento , Europa Oriental , Testes de Sensibilidade Microbiana , Trichoderma/classificação
10.
Proc Natl Acad Sci U S A ; 114(17): 4543-4548, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28404731

RESUMO

The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.


Assuntos
Epigenômica , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Medicago truncatula/genética , Ploidias , Sinorhizobium/fisiologia , Perfilação da Expressão Gênica , Medicago truncatula/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
11.
Proc Natl Acad Sci U S A ; 114(26): 6854-6859, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607058

RESUMO

Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/metabolismo , Medicago truncatula , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia
12.
BMC Genomics ; 19(1): 873, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514211

RESUMO

BACKGROUND: Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. RESULTS: In this work, we report the analysis of the VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 25 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the ORF63 exhibits a complex structural variation encompassing the splice sites of VZV latency transcripts. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. CONCLUSIONS: Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation of the VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.


Assuntos
Herpesvirus Humano 3/genética , Transcriptoma , Linhagem Celular , Humanos , Fases de Leitura Aberta/genética , Isoformas de Proteínas/genética , Edição de RNA , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Proteínas Virais/genética
13.
Environ Microbiol ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921018

RESUMO

To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E > U and S > U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

14.
Brain ; 140(3): 582-598, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137726

RESUMO

New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases.


Assuntos
Diferenciação Celular/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica/genética , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Movimento Celular/genética , Células Cultivadas , Metilação de DNA/genética , Feto , Síndrome do Cromossomo X Frágil/genética , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Neurogênese , Transfecção , Repetições de Trinucleotídeos/genética
15.
Proc Natl Acad Sci U S A ; 112(49): 15232-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26401023

RESUMO

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Assuntos
Cisteína/química , Medicago truncatula/fisiologia , Mutação , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/química , Simbiose
16.
Eur J Neurosci ; 46(9): 2429-2444, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921695

RESUMO

As one of the most unique properties of nerve cells, their intrinsic excitability allows them to transform synaptic inputs into action potentials. This process reflects a complex interplay between the synaptic inputs and the voltage-dependent membrane currents of the postsynaptic neuron. While neurons in natural conditions mostly fire under the action of intense synaptic bombardment and receive fluctuating patterns of excitation and inhibition, conventional techniques to characterize intrinsic excitability mainly utilize static means of stimulation. Recently, we have shown that voltage-gated membrane currents regulate the firing responses under current step stimulation and under physiologically more realistic inputs in a differential manner. At the same time, a multitude of neuron types have been shown to exhibit some form of subthreshold resonance that potentially allows them to respond to synaptic inputs in a frequency-selective manner. In this study, we performed virtual experiments in computational models of neurons to examine how specific voltage-gated currents regulate their excitability under simulated frequency-modulated synaptic inputs. The model simulations and subsequent dynamic clamp experiments on mouse hippocampal pyramidal neurons revealed that the impact of voltage-gated currents in regulating the firing output is strongly frequency-dependent and mostly affecting the synaptic integration at theta frequencies. Notably, robust frequency-dependent regulation of intrinsic excitability was observed even when conventional analysis of membrane impedance suggested no such tendency. Consequently, plastic or homeostatic regulation of intrinsic membrane properties can tune the frequency selectivity of neuron populations in a way that is not readily expected from subthreshold impedance measurements.


Assuntos
Simulação por Computador , Estimulação Elétrica , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Animais , Células Cultivadas , Hipocampo/fisiologia , Camundongos , Canais de Potássio/metabolismo
17.
Fogorv Sz ; 110(1): 3-6, 2017 Mar.
Artigo em Inglês, Húngaro | MEDLINE | ID: mdl-29847061

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that results in a chronic, systemic inflammatory disorder that principally attacks synovial joints. The pathology of the disease process often leads to the destruction of articular cartilage and the bone. Normal bone remodeling cycle requires the balance between bone resorption and bone deposition which is determined by the activities of two principle cell types, namely, osteoclasts and osteoblasts. Osteoblasts and osteoclasts, coupled together via cytokine mediated cell signaling. The dominance of pro-inflammatory cytokines in bone homeostasis leads to osteolysis. Many articles have been published about the pathobiochemical similarity between rheumatoid arthritis and periodontitis, whereas the role of the disease in bone regeneration and osseointegration is less proven. According to the international literature in rheumatoid arthritis, due to frequent periodontitis, decreased salivary secretion, medication, as well as a decrease in bone regenerative potential, rheumatoid arthritis is considered as relative contraindication in implantology. In daily practice, we face more frequently with rheumatoid arthritis which makes the topic so important in oral surgery and implantology. It can be said that adequate preoperative preparation (healthy periodontal status, antibiotic protection, consultation with the rheumatologist to modify medication) interventions can be done more safely. The risk of failure is higher in patients suffering from rheumatoid arthritis of the underlying disease which fact is important to be communicated before surgical intervention.


Assuntos
Artrite Reumatoide , Implantes Dentários , Procedimentos Cirúrgicos Bucais , Humanos , Osseointegração
18.
Mol Plant Microbe Interact ; 29(3): 210-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26713350

RESUMO

Medicago and closely related legume species from the inverted repeat-lacking clade (IRLC) impose terminal differentiation onto their bacterial endosymbionts, manifested in genome endoreduplication, cell enlargement, and loss of cell-division capacity. Nodule-specific cysteine-rich (NCR) secreted host peptides are plant effectors of this process. As bacteroids in other IRLC legumes, such as Cicer arietinum and Glycyrrhiza lepidota, were reported not to display features of terminal differentiation, we investigated the fate of bacteroids in species from these genera as well as in four other species representing distinct genera of the phylogenetic tree for this clade. Bacteroids in all tested legumes proved to be larger in size and DNA content than cultured cells; however, the degree of cell elongation was rather variable in the different species. In addition, the reproductive ability of the bacteroids isolated from these legumes was remarkably reduced. In all IRLC species with available sequence data, the existence of NCR genes was found. These results indicate that IRLC legumes provoke terminal differentiation of their endosymbionts with different morphotypes, probably with the help of NCR peptides.


Assuntos
Bactérias/classificação , Fabaceae/genética , Sequências Repetidas Invertidas/genética , Filogenia , Sequência de Aminoácidos , Bactérias/ultraestrutura , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas
19.
Proteomics ; 15(13): 2291-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690539

RESUMO

The symbiosis of Medicago truncatula with Sinorhizobium meliloti or Sinorhizobium medicae soil bacteria results in the formation of root nodules where bacteria inside the plant cells are irreversibly converted to polyploid, nondividing nitrogen-fixing bacteroids. Bacteroid differentiation is host-controlled and the plant effectors are symbiosis-specific secreted plant peptides. In the M. truncatula genome there are more than 600 symbiotic peptide genes including 500 small genes coding for nodule-specific cysteine-rich (NCR) peptides. While NCR transcripts represent >5% of the nodule transcriptome, the existence of only eight NCR peptides has been demonstrated so far. The predicted NCRs are secreted peptides targeted to the endosymbionts. Correspondingly, all the eight detected peptides were present in the bacteroids. Here, we report on large-scale detection of NCR peptides from nodules and from isolated, semipurified endosymbionts at various stages of their differentiation. In total 138 NCRs were detected in the bacteroids; 38 were cationic while the majority was anionic. The presence of early NCRs in nitrogen-fixing bacteroids indicates their high stability, and their long-term maintenance suggests persisting biological roles in the bacteroids.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Simbiose
20.
J Neurophysiol ; 113(1): 232-43, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274346

RESUMO

The intrinsic excitability of neurons is known to be dynamically regulated by activity-dependent plasticity and homeostatic mechanisms. Such processes are commonly analyzed in the context of input-output functions that describe how neurons fire in response to constant levels of current. However, it is not well understood how changes of excitability as observed under static inputs translate to the function of the same neurons in their natural synaptic environment. Here we performed a computational study and hybrid experiments on rat bed nucleus of stria terminalis neurons to compare the two scenarios. The inward rectifying Kir current (IKir) and the hyperpolarization-activated cation current (Ih) were found to be considerably more effective in regulating the firing under synaptic inputs than under static stimuli. This prediction was experimentally confirmed by dynamic-clamp insertion of a synthetic inwardly rectifying Kir current into the biological neurons. At the same time, ionic currents that activate with depolarization were more effective regulating the firing under static inputs. When two intrinsic currents are concurrently altered such as those under homeostatic regulation, the effects in firing responses under static vs. dynamic inputs can be even more contrasting. Our results show that plastic or homeostatic changes of intrinsic membrane currents can shape the current step responses of neurons and their firing under synaptic inputs in a differential manner.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Animais , Simulação por Computador , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Modelos Neurológicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Wistar , Núcleos Septais/fisiologia , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA