Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chem Soc Rev ; 53(9): 4434-4462, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497833

RESUMO

Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33707214

RESUMO

Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala)4 Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala)4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor-acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a "scorpion-shaped" molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH…O=C-NH…O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor-acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.


Assuntos
Aminoácidos/química , Transporte de Elétrons , Ligação de Hidrogênio , Oligopeptídeos/química , Dicroísmo Circular , Elétrons , Imidas/química , Cinética , Espectroscopia de Ressonância Magnética , Perileno/análogos & derivados , Perileno/química , Porfirinas/química , Dobramento de Proteína , Termodinâmica
3.
Chemistry ; 29(71): e202302112, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724745

RESUMO

The ability of various hydrogen-bonded resorcinarene-based capsules to bind α,ω-alkylbisDABCOnium (DnD) guests of different lengths was investigated in solution and in the gas-phase. While no host-guest interactions were detected in solution, encapsulation could be achieved in the charged droplets formed during electrospray ionisation (ESI). This included guests, which are far too long in their most stable conformation to fit inside the cavity of the capsules. A combination of three mass spectrometric techniques, namely, collision-induced dissociation, hydrogen/deuterium exchange, and ion-mobility mass spectrometry, together with computational modelling allow us to determine the binding mode of the DnD guests inside the cavity of the capsules. Significant distortions of the guest into horseshoe-like arrangements are required to optimise cation-π interactions with the host, which also adopt distorted geometries with partially open hydrogen-bonding seams when binding longer guests. Such quasi "spring-loaded" capsules can form in the charged droplets during the ESI process as there is no competition between guest encapsulation and ion pair formation with the counterions that preclude encapsulation in solution. The encapsulation complexes are sufficiently stable in the gas-phase - even when strained - because non-covalent interactions significantly strengthen in the absence of solvent.

4.
Chemistry ; 29(2): e202203116, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36214211

RESUMO

Core-fluorescent cavitands based on 2-(2'-resorcinol)benzimidazole fluorophores (RBIs) merged with the resorcin[4]arene skeleton were designed and synthesized. The cavitands, due to the presence of intramolecular hydrogen bonds and increased acidity, show excited state intramolecular proton transfer (ESIPT) and readily undergo deprotonation to form dianionic cavitands, capable of strong binding to organic cations. The changes in fluorescence are induced by deprotonation and binding events and involve huge Stokes shifts (due to emission from anionic double keto tautomers) and cation-selective enhancement of emission originating from the restriction of intramolecular motion (RIR) upon recognition in the cavity. Ab initio calculations indicate that the macrocyclic scaffold stabilizes the ground state tautomeric forms of the fluorophores that are not observed for non-macrocyclic analogs. In the excited state, the emitting forms for both macrocyclic scaffolds and non-macrocyclic analogs are anionic double keto tautomers, which are the result of excited state intramolecular proton transfer (ESIPT) or excited state double proton transfer (ESDPT).


Assuntos
Corantes Fluorescentes , Prótons , Corantes Fluorescentes/química , Fluorescência
5.
J Am Chem Soc ; 144(12): 5350-5358, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35274940

RESUMO

Spatial sequestration of molecules is a prerequisite for the complexity of biological systems, enabling the occurrence of numerous, often non-compatible chemical reactions and processes in one cell at the same time. Inspired by this compartmentalization concept, chemists design and synthesize artificial nanocontainers (capsules and cages) and use them to mimic the biological complexity and for new applications in recognition, separation, and catalysis. Here, we report the formation of large closed-shell species by interactions of well-known polyphenolic macrocycles with anions. It has been known since many years that C-alkyl resorcin[4]arenes (R4C) and C-alkyl pyrogallol[4]arenes (P4C) narcissistically self-assemble in nonpolar solvents to form hydrogen-bonded capsules. Here, we show a new interaction model that additionally involves anions as interacting partners and leads to even larger capsular species. Diffusion-ordered spectroscopy and titration experiments indicate that the anion-sealed species have a diameter of >26 Å and suggest stoichiometry (M)6(X-)24 and tight ion pairing with cations. This self-assembly is effective in a nonpolar environment (THF and benzene but not in chloroform), however, requires initiation by mechanochemistry (dry milling) in the case of non-compatible solubility. Notably, it is common among various polyphenolic macrocycles (M) having diverse geometries and various conformational lability.


Assuntos
Calixarenos , Pirogalol , Ânions , Calixarenos/química , Pirogalol/química , Resorcinóis/química
6.
Inorg Chem ; 61(29): 11410-11418, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35815508

RESUMO

Tripodal chiral ligands containing amino acid residues and salicyl-acylhydrazone units were synthesized and used to obtain coordination cages through deprotonation and coordination to gallium. These coordination cages have Ga3L2 stoichiometry and pinwheel geometry with two types of chiral centers built into their walls: stereogenic centers at the amino acid backbones and stereoselectively induced centers at metal ions. The pinwheel geometry is unique among analogous cages and originates from the partial flexibility of the ligands. Despite the flexibility, the ligands induce the chirality of metal centers in a highly stereoselective way, leading to the formation of cages that are single diastereoisomers. It has also been demonstrated that stereoselectivity is a unique feature of cage geometry and leads to effective chiral self-sorting: homochiral cages can be obtained selectively from the mixtures of racemic ligands. The configuration of metal centers was determined by circular dichroism, TD DFT calculation, and X-ray crystallography.


Assuntos
Aminoácidos , Gálio , Dicroísmo Circular , Ligantes , Estereoisomerismo
7.
Org Biomol Chem ; 20(25): 5095-5103, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699382

RESUMO

Macrocyclic polyphenolic compounds such as resorcin[4]arenes can be considered as multidentate anion receptors. In the current work, we combine new experimental data and reports from the previous literature (solution data and deposited crystal structures from the CCDC) to systematically analyze binding motifs between resorcin[4]arene derivatives and anions, determine the role of supporting interactions from CH donors, ion pairing and estimate their relative strength. We have found that in medium polarity solvents (THF) anion binding is a main driving force for the formation of complexes between resorcinarenes and Alk4NX salts. Three binding modes have been detected using 1H NMR and DOSY, depending on the type of additional interactions. Mode I was observed for upper-rim unsubstituted resorcinarenes, which use OH groups and aromatic CH from the upper rim as hydrogen bond donors to form multidentate and multivalent binding sites at the upper rim. Mode II was observed for upper-rim halogenated resorcinarenes (tetrabromo- and tetraiodo-derivatives), which use OH groups and aliphatic CH atoms from the bridges to support the chelation of anions between aromatic units. This binding mode is also multidentate and multivalent, but weaker and more anion-selective than mode I (works effectively for chlorides but not for bromides). For O-substituted derivatives, mode III is observed, with anions bound in a nest formed by aromatic CH atoms in the lower rim (multidentate but monovalent binding). The relative strength of these three binding modes, their solvent-dependence, and emergence in the crystal structures (CCDC) have been evaluated.


Assuntos
Compostos Macrocíclicos , Fenóis , Ânions/química , Sítios de Ligação , Ligação de Hidrogênio , Modelos Moleculares , Fenóis/química , Solventes
8.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885682

RESUMO

Electronic circular dichroism (ECD) can be used to study various aspects of self-assembly (definition of stoichiometric ratios, chirality amplification during self-assembly, host-guest complexation). In this work, we show that ECD is a valuable tool for monitoring the self-assembly of chiral peptide-based capsules. By analyzing the signs, intensities, and temperature dependences of ECD bands, the effects of the non-specific processes can be separated from the restriction of intramolecular motion (RIM) caused by discrete self-assembly. Analysis of experimental and theoretical ECD spectra show that the differences between assembled and non-assembled species originate from induction of inherently chiral conformation and restriction of conformational freedom that leads to amplification of ECD signals during self-assembly of discrete species.

9.
Angew Chem Int Ed Engl ; 60(9): 4540-4544, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33372317

RESUMO

The paper reports formation of exceptionally large capsular species (diameter of c. a. 30 Å) by interactions of polyphenolic macrocycles with 5-fold symmetry with anions. Pyrogallol[5]arenes and resorcin[5]arenes interact with anions via hydrogen bonds involving phenolic OH groups or aromatic CH groups. Based on NMR titration experiments, diffusion coefficients, and geometric requirements, it is postulated that the capsules have (P5H)12 (X- )60 or (R5H)12 (X- )60 stoichiometry and a unique geometry of one of the Platonic solids-a dodecahedron. The capsules exist in THF and in benzene, but not in chloroform, reflecting competitive effects in the solvation of anions. It is also demonstrated that mechanochemical pre-treatment (dry-milling) of solid samples is indispensable to initialize self-assembly in benzene.

10.
Chemistry ; 26(7): 1558-1566, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691377

RESUMO

Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.

11.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050670

RESUMO

The paper presents the synthesis of an enaminone resorcin[4]arene via a thermally activated o-quinomethide. The crystal structure indicates that in the solid state all enaminone units participate in a unidirectional seam of 12 intramolecular hydrogen bonds that are formed around the cavity. The molecule exhibits C2 symmetry, with two opposite-laying enaminone units directed inside the cavity ("in"), and the other two units outside the cavity ("out"). In the solution the enaminone resorcin[4]arene exists as a mixture of conformers with distribution controlled by temperature and solvent. The experimental data are compared with the results of theoretical calculations using DFT B3LYP/6-31G(d,p) and fast semi-empirical DFTB/GFN2-xTB method in various solvents.


Assuntos
Modelos Moleculares , Resorcinóis/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular , Análise Espectral
12.
Chemistry ; 25(12): 3091-3097, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30548937

RESUMO

Directional self-assembly of uncharged molecules in water is a major challenge in supramolecular chemistry. Herein, it is demonstrated that peptide-based cavitands wrap around a hydrophobic core (fullerene C60 ) by a combination of the hydrophobic effect and hydrogen-bonding interactions to form highly ordered three-component complexes in water that resemble the molten-globule stage of protein folding. The complexes were characterized by DOSY NMR spectroscopy, small-angle X-ray scattering, and circular dichroism, and their structures were confirmed by X-ray crystallography. Enhancement of the CD signals by nearly one order of magnitude and increased hydrolytic stability of hydrazone bonds of the complexes relative to the nonassembled species were observed. In contrast, DMSO and DMSO/water mixtures were found to be highly disintegrative for these complexes. Interestingly, some cavitands can only be synthesized in the presence of the hydrophobic template followed by disassembly of the complexes.

13.
Chem Rev ; 117(6): 4863-4899, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28277655

RESUMO

This review discusses chiral self-sorting-the process of choosing an interaction partner with a given chirality from a complex mixture of many possible racemic partners. Chiral self-sorting (also known as chiral self-recognition or chiral self-discrimination) is fundamental for creating functional structures in nature and in the world of chemistry because interactions between molecules of the same or the opposite chirality are characterized by different interaction energies and intrinsically different resulting structures. However, due to the similarity between recognition sites of enantiomers and common conformational lability, high fidelity homochiral or heterochiral self-sorting poses a substantial challenge. Chiral self-sorting occurs among natural and synthetic molecules that leads to the amplification of discrete species. The review covers a variety of complex self-assembled structures ranging from aggregates made of natural and racemic peptides and DNA, through artificial functional receptors, macrocyles, and cages to catalytically active metal complexes and helix mimics. The examples involve a plethora of reversible interactions: electrostatic interactions, π-π stacking, hydrogen bonds, coordination bonds, and dynamic covalent bonds. A generalized view of the examples collected from different fields allows us to suggest suitable geometric models that enable a rationalization of the observed experimental preferences and establishment of the rules that can facilitate further design.

14.
Beilstein J Org Chem ; 15: 1913-1924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501658

RESUMO

Directional self-assembly of conformationally well-defined complexes in polar environment is still a major challenge in supramolecular chemistry. In the present study we demonstrate that resorcin[4]arene sulfonic acid (RSA) interacts with chiral amines (amino acid derivatives and aminocavitands) to form inclusion complexes and capsules based on electrostatic interactions. The complexes were characterized by circular dichroism and DOSY NMR spectroscopy. Chirality transfer from amines onto a resorcinarene skeleton was manifested by the appearance of signals in CD spectra and diastereotopic splitting in NMR spectra. The complexes proved to be thermodynamically stable in methanol, but DMSO and methanol/water mixtures were found to be highly disintegrative for these complexes. This result is quite non-intuitive and worth attention in the context of formation of supramolecular complexes in polar environment, for which DMSO is most often a first-choice solvent.

15.
16.
Chemistry ; 22(9): 3148-55, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808958

RESUMO

Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen-bond-based self-assembly. The dynamic character of the linkers and the preference of the peptides towards self-assembly into ß-barrel-type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å(3) and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self-sorting and chiral self-assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70 , is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70 , and the X-ray structures provide unique information on the modes of peptide-fullerene interactions.


Assuntos
Calixarenos/química , Fulerenos/química , Peptídeos/química , Fenilalanina/análogos & derivados , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenilalanina/química , Estereoisomerismo
17.
J Org Chem ; 81(14): 6018-25, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27336857

RESUMO

The Diels-Alder reaction enables introduction of new functionalities onto the resorcinarene skeleton with simultaneous generation of new stereogenic centers and expansion of the internal cavity. We present highly regio- and diastereoselective inverse electron demand oxa-Diels-Alder reactions of resorcinarene ortho-quinone methide with benzofuran and indene, each generating 12 new stereogenic centers. The mechanism and reasons for regioselectivity and diastereoselectivity were analyzed using theoretical calculations (NBO charges, Fukui functions, transition state energies, and thermodynamic stability of the products). Enantiomers were separated, and their configurations were determined by comparison of experimental and theoretical electronic circular dichroism spectra.

18.
J Org Chem ; 80(7): 3488-95, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25723902

RESUMO

Hybrid [n]arenes, the class of medium-sized macrocyclic compounds consisting of different alkoxybenzene units, were obtained by a simple, one-pot, direct condensation of two different alkoxybenzenes with formaldehyde catalyzed by a Brønsted acid (trifluoroacetic acid). We have shown that, under Brønsted acid catalysis, this reaction is reversible and therefore governed by the relative stability of the products. The main macrocyclic products are hybrid [n]arenes consisting of four alkoxybenzene units of [2 + 2] or [3 + 1] stoichiometry. However, an unusual [3 + 2] hybrid macrocycle was also obtained as a main product of the condensation between 1,4-dimethoxybenzene, 1,3,5-trimethoxybenzene, and formaldehyde. The stability of the hybrid products and the reversibility of the reaction were further confirmed by a scrambling experiment, involving pillar[5]arene and per-O-methylated resorcin[4]arene. The scrambling experiment has given hybrid macrocycles in yields comparable with those obtained in condensation reactions. NMR spectra and X-ray structures of hybrid [n]arenes indicate that 1,2- and 1,3-dialkoxybenzene units are flexible parts of macrocyclic rings. However, the 1,4-dialkoxybenzene units present considerable steric hindrance, resulting in the formation of isomers and inherently chiral macrocycles due to inhibited rotation. The recognition properties toward various organic cations were also determined. Highly selective recognition of the N-methylpyridinium cation was observed for the [3 + 2] hybrid macrocycle.

19.
Angew Chem Int Ed Engl ; 53(50): 13760-4, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25298130

RESUMO

Owing to their versatility and biocompatibility, peptide-based self-assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on ß-barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self-assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self-assembly. Self-assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto-enamine hemisphere and enol-imine hemisphere) are observed in this capsule, allowing the structure to adapt for self-assembly.


Assuntos
Peptídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Estereoisomerismo
20.
Chem Commun (Camb) ; 60(25): 3417-3420, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38441137

RESUMO

We show that the substitution of tetra(benzimidazole)resorcin[4]arenes with electron withdrawing groups on the upper rim enhances anion binding at the opposite edge by more than three orders of magnitude. Moreover, selective anion binding at either the OH/NH or CH binding sites is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA