Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 622-623: 783-789, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223905

RESUMO

Regulation of plant biomass accumulation is a key issue in effective grassland conservation in Europe. Burning is an alternative tool to regulate biomass dynamics in semi-natural grasslands even in the absence of grazing or mowing. We tested the effects of regular spring burning on the biomass fractions and fine-scale plant species composition of species-rich foothill grasslands in North-Hungary. There were five regularly burned and five control grasslands in the study; we collected twenty 20×20-cm sized biomass samples from each. We analyzed the main fractions (litter, graminoid and forb biomass), and the species-level biomass scores, and flowering success in the control and burned grasslands. We revealed that fire increased the amount of forb biomass and decreased the amount of litter, which suggested that regular burning might be feasible for regulating biomass dynamics. The non-metric multi-dimensional scaling (NMDS) showed a high similarity of the control and burned grasslands in species composition. However, plant diversity, and the number of flowering shoots decreased significantly in the burned grasslands. In regularly burned sites we found a significant decline of specialist species, as well as of steppic flora elements. Our results showed that besides its positive effect on biomass dynamics, high-frequency burning threatens the overall diversity and specialist plant species in semi-natural grasslands. We recommend that proper fire regimes should be first studied experimentally, to provide a scientific basis for the application of prescribed burning management in such habitats.


Assuntos
Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Pradaria , Incêndios Florestais , Europa (Continente) , Hungria
2.
PeerJ ; 4: e2800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028470

RESUMO

The genus Elatine contains ca 25 species, all of which are small, herbaceous annuals distributed in ephemeral waters on both hemispheres. However, due to a high degree of morphological variability (as a consequence of their amphibious life-style), the taxonomy of this genus remains controversial. Thus, to fill this gap in knowledge, we present a detailed molecular phylogenetic study of this genus based on nuclear (rITS) and plastid (accD-psaI, psbJ-petA, ycf6-psbM-trnD) sequences using 27 samples from 13 species. On the basis of this phylogenetic analysis, we provide a solid phylogenetic background for the modern taxonomy of the European members of the genus. Traditionally accepted sections of this tree (i.e., Crypta and Elatinella) were found to be monophyletic; only E. borchoni-found to be a basal member of the genus-has to be excluded from the latter lineage to achieve monophyly. A number of taxonomic conclusions can also be drawn: E. hexandra, a high-ploid species, is most likely a stabilised hybrid between the main sections; E. campylosperma merits full species status based on both molecular and morphological evidence; E. gussonei is a more widespread and genetically diverse species with two main lineages; and the presence of the Asian E. ambigua in the European flora is questionable. The main lineages recovered in this analysis are also supported by a number of synapomorphic morphological characters as well as uniform chromosome counts. Based on all the evidence presented here, two new subsections within Elatinella are described: subsection Hydropipera consisting of the temperate species of the section, and subsection Macropodae including the Mediterranean species of the section.

3.
PeerJ ; 3: e1473, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713235

RESUMO

Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine L. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. The results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e., different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA