Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(12): e1011742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127830

RESUMO

The sustainability of marine communities is critical for supporting many biophysical processes that provide ecosystem services that promote human well-being. It is expected that anthropogenic disturbances such as climate change and human activities will tend to create less energetically-efficient ecosystems that support less biomass per unit energy flow. It is debated, however, whether this expected development should translate into bottom-heavy (with small basal species being the most abundant) or top-heavy communities (where more biomass is supported at higher trophic levels with species having larger body sizes). Here, we combine ecological theory and empirical data to demonstrate that full marine protection promotes shifts towards top-heavy energetically-efficient structures in marine communities. First, we use metabolic scaling theory to show that protected communities are expected to display stronger top-heavy structures than disturbed communities. Similarly, we show theoretically that communities with high energy transfer efficiency display stronger top-heavy structures than communities with low transfer efficiency. Next, we use empirical structures observed within fully protected marine areas compared to disturbed areas that vary in stress from thermal events and adjacent human activity. Using a nonparametric causal-inference analysis, we find a strong, positive, causal effect between full marine protection and stronger top-heavy structures. Our work corroborates ecological theory on community development and provides a quantitative framework to study the potential restorative effects of different candidate strategies on protected areas.


Assuntos
Mudança Climática , Ecossistema , Humanos , Biomassa , Tamanho Corporal
2.
Nature ; 563(7729): 109-112, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333623

RESUMO

Losses and gains in species diversity affect ecological stability1-7 and the sustainability of ecosystem functions and services8-13. Experiments and models have revealed positive, negative and no effects of diversity on individual components of stability, such as temporal variability, resistance and resilience2,3,6,11,12,14. How these stability components covary remains poorly understood15. Similarly, the effects of diversity on overall ecosystem stability16, which is conceptually akin to ecosystem multifunctionality17,18, remain unknown. Here we studied communities of aquatic ciliates to understand how temporal variability, resistance and overall ecosystem stability responded to diversity (that is, species richness) in a large experiment involving 690 micro-ecosystems sampled 19 times over 40 days, resulting in 12,939 samplings. Species richness increased temporal stability but decreased resistance to warming. Thus, two stability components covaried negatively along the diversity gradient. Previous biodiversity manipulation studies rarely reported such negative covariation despite general predictions of the negative effects of diversity on individual stability components3. Integrating our findings with the ecosystem multifunctionality concept revealed hump- and U-shaped effects of diversity on overall ecosystem stability. That is, biodiversity can increase overall ecosystem stability when biodiversity is low, and decrease it when biodiversity is high, or the opposite with a U-shaped relationship. The effects of diversity on ecosystem multifunctionality would also be hump- or U-shaped if diversity had positive effects on some functions and negative effects on others. Linking the ecosystem multifunctionality concept and ecosystem stability can transform the perceived effects of diversity on ecological stability and may help to translate this science into policy-relevant information.


Assuntos
Organismos Aquáticos , Biodiversidade , Cilióforos/classificação , Cilióforos/fisiologia , Biomassa , Cadeia Alimentar , Microbiologia , Modelos Biológicos
3.
Ecol Lett ; 22(7): 1061-1071, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30985066

RESUMO

Warming and nutrient enrichment are major environmental factors shaping ecological dynamics. However, cross-scale investigation of their combined effects by linking theory and experiments is lacking. We collected data from aquatic microbial ecosystems investigating the interactive effects of warming (constant and rising temperatures) and enrichment across levels of organisation and contrasted them with community models based on metabolic theory. We found high agreement between our observations and theoretical predictions: we observed in many cases the predicted antagonistic effects of high temperature and high enrichment across levels of organisation. Temporal stability of total biomass decreased with warming but did not differ across enrichment levels. Constant and rising temperature treatments with identical mean temperature did not show qualitative differences. Overall, we conclude that model and empirical results are in broad agreement due to robustness of the effects of temperature and enrichment, that the mitigating effects of temperature on effects of enrichment may be common, and that models based on metabolic theory provide qualitatively robust predictions of the combined ecological effects of enrichment and temperature.


Assuntos
Ecossistema , Temperatura Alta , Biomassa , Temperatura
4.
Nat Ecol Evol ; 4(8): 1036-1043, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572220

RESUMO

Environmental change can alter species' abundances within communities consistently; for example, increasing all abundances by the same percentage, or more idiosyncratically. Here, we show how comparing effects of temperature on species grown in isolation and when grown together helps our understanding of how ecological communities more generally respond to environmental change. In particular, we find that the shape of the feasibility domain (the parameter space of carrying capacities compatible with positive species' abundances) helps to explain the composition of experimental microbial communities under changing environmental conditions. First, we introduce a measure to quantify the asymmetry of a community's feasibility domain using the column vectors of the corresponding interaction matrix. These column vectors describe the effects each species has on all other species in the community (hereafter referred to as species' multidimensional effects). We show that as the asymmetry of the feasibility domain increases the relationship between species' abundance when grown together and when grown in isolation weakens. We then show that microbial communities experiencing different temperature environments exhibit patterns consistent with this theory. Specifically, communities at warmer temperatures show relatively more asymmetry; thus, the idiosyncrasy of responses is higher compared with that in communities at cooler temperatures. These results suggest that while species' interactions are typically defined at the pairwise level, multispecies dynamics can be better understood by focusing on the effects of these interactions at the community level.


Assuntos
Biota , Microbiota , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA