Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sleep Res ; : e13993, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430421

RESUMO

Rats are known to use a 22-kHz ultrasonic vocalisation as a distress call to warn of danger to other members of their group. We monitored 22-kHz ultrasonic vocalisation emissions in rats (lean and obese) as part of a sleep deprivation study to detect the eventual presence of stress during the procedure. Unexpectedly, we detected ultrasonic vocalisation emission during rapid eye movement (REM) sleep, but not during non-REM (NREM) sleep, in all the rats. The event occurs during the expiratory phase and can take place singularly or as a train. No difference was detected in the number or duration of these events in lean versus obese rats, during the light versus the dark period, and after sleep deprivation. As far as we know, this is the first report showing that rats can vocalise during REM sleep.

2.
Sci Data ; 11(1): 184, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341463

RESUMO

Fluorescent Neuronal Cells v2 is a collection of fluorescence microscopy images and the corresponding ground-truth annotations, designed to foster innovative research in the domains of Life Sciences and Deep Learning. This dataset encompasses three image collections wherein rodent neuronal cell nuclei and cytoplasm are stained with diverse markers to highlight their anatomical or functional characteristics. Specifically, we release 1874 high-resolution images alongside 750 corresponding ground-truth annotations for several learning tasks, including semantic segmentation, object detection and counting. The contribution is two-fold. First, thanks to the variety of annotations and their accessible formats, we anticipate our work will facilitate methodological advancements in computer vision approaches for segmentation, detection, feature extraction, unsupervised and self-supervised learning, transfer learning, and related areas. Second, by enabling extensive exploration and benchmarking, we hope Fluorescent Neuronal Cells v2 will catalyze breakthroughs in fluorescence microscopy analysis and promote cutting-edge discoveries in life sciences.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Neurônios , Núcleo Celular , Microscopia de Fluorescência
4.
Front Physiol ; 14: 1129278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969585

RESUMO

Introduction: Hyperphosphorylated Tau protein (PPTau) is the hallmark of tauopathic neurodegeneration. During "synthetic torpor" (ST), a transient hypothermic state which can be induced in rats by the local pharmacological inhibition of the Raphe Pallidus, a reversible brain Tau hyperphosphorylation occurs. The aim of the present study was to elucidate the - as yet unknown - molecular mechanisms underlying this process, at both a cellular and systemic level. Methods: Different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation were assessed by western blot in the parietal cortex and hippocampus of rats induced in ST, at either the hypothermic nadir or after the recovery of euthermia. Pro- and anti-apoptotic markers, as well as different systemic factors which are involved in natural torpor, were also assessed. Finally, the degree of microglia activation was determined through morphometry. Results: Overall, the results show that ST triggers a regulated biochemical process which can dam PPTau formation and favor its reversibility starting, unexpectedly for a non-hibernator, from the hypothermic nadir. In particular, at the nadir, the glycogen synthase kinase-ß was largely inhibited in both regions, the melatonin plasma levels were significantly increased and the antiapoptotic factor Akt was significantly activated in the hippocampus early after, while a transient neuroinflammation was observed during the recovery period. Discussion: Together, the present data suggest that ST can trigger a previously undescribed latent and regulated physiological process, that is able to cope with brain PPTau formation.

5.
J Comp Physiol B ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812305

RESUMO

Neuronal Tau protein hyperphosphorylation (PPtau) is a hallmark of tauopathic neurodegeneration. However, a reversible brain PPtau occurs in mammals during either natural or "synthetic" torpor (ST), a transient deep hypothermic state that can be pharmacologically induced in rats. Since in both conditions a high sleep pressure builds up during the regaining of euthermia, the aim of this work was to assess the possible role of post-ST sleep in PPtau dephosphorylation. Male rats were studied at the hypothermic nadir of ST, and 3-6 h after the recovery of euthermia, after either normal sleep (NS) or total sleep deprivation (SD). The effects of SD were studied by assessing: (i) deep brain temperature (Tb); (ii) immunofluorescent staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau), assessed in 19 brain structures; (iii) different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation, including pro- and anti-apoptotic markers, assessed through western blot in the parietal cortex and hippocampus; (iv) systemic factors which are involved in natural torpor; (v) microglia activation state, by considering morphometric variations. Unexpectedly, the reversibility of PPtau was more efficient in SD than in NS animals, and was concomitant with a higher Tb, higher melatonin plasma levels, and a higher frequency of the microglia resting phenotype. Since the reversibility of ST-induced PPtau was previously shown to be driven by a latent physiological molecular mechanism triggered by deep hypothermia, short-term SD soon after the regaining of euthermia seems to boost the possible neuroprotective effects of this mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA