Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 614(7947): 270-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755170

RESUMO

Photoelectrochemical (PEC) water splitting to produce hydrogen fuel was first reported 50 years ago1, yet artificial photosynthesis has not become a widespread technology. Although planar Si solar cells have become a ubiquitous electrical energy source economically competitive with fossil fuels, analogous PEC devices have not been realized, and standard Si p-type/n-type (p-n) junctions cannot be used for water splitting because the bandgap precludes the generation of the needed photovoltage. An alternative paradigm, the particle suspension reactor (PSR), forgoes the rigid design in favour of individual PEC particles suspended in solution, a potentially low-cost option compared with planar systems2,3. Here we report Si-based PSRs by synthesizing high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to catalytically split water. By encoding a p-type-intrinsic-n-type (p-i-n) superlattice within single SiNWs, tunable photovoltages exceeding 10 V were observed under 1 sun illumination. Spatioselective photoelectrodeposition of oxygen and hydrogen evolution co-catalysts enabled water splitting at infrared wavelengths up to approximately 1,050 nm, with the efficiency and spectral dependence of hydrogen generation dictated by the photonic characteristics of the sub-wavelength-diameter SiNWs. Although initial energy conversion efficiencies are low, multijunction SiNWs bring the photonic advantages of a tunable, mesoscale geometry and the material advantages of Si-including the small bandgap and economies of scale-to the PSR design, providing a new approach for water-splitting reactors.

2.
ACS Polym Au ; 2(4): 275-286, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36855565

RESUMO

Polymeric mixed ionic-electronic conductors (MIECs) are of broad interest in the field of energy storage and conversion, optoelectronics, and bioelectronics. A class of polymeric MIECs are conjugated polyelectrolytes (CPEs), which possess a π-conjugated backbone imparting electronic transport characteristics along with side chains composed of a pendant ionic group to allow for ionic transport. Here, our study focuses on the humidity-dependent structure-transport properties of poly[3-(potassium-n-alkanoate) thiophene-2,5-diyl] (P3KnT) CPEs with varied side-chain lengths of n = 4-7. UV-vis spectroscopy along with electronic paramagnetic resonance (EPR) spectroscopy reveals that the infiltration of water leads to a hydrated, self-doped state that allows for electronic transport. The resulting humidity-dependent ionic conductivity (σi) of the thin films shows a monotonic increase with relative humidity (RH) while electronic conductivity (σe) follows a non-monotonic profile. The values of σe continue to rise with increasing RH reaching a local maximum after which σe begins to decrease. P3KnTs with higher n values demonstrate greater resiliency to increasing RH before suffering a decrease in σe. This drop in σe is attributed to two factors. First, disruption of the locally ordered π-stacked domains observed through in situ humidity-dependent grazing incidence wide-angle X-ray scattering (GIWAXS) experiments can account for some of the decrease in σe. A second and more dominant factor is attributed to the swelling of the amorphous domains where electronic transport pathways connecting ordered domains are impeded. P3K7T is most resilient to swelling (based on ellipsometry and water uptake measurements) where sufficient hydration allows for high σi (1.0 × 10-1 S/cm at 95% RH) while not substantially disrupting σe (1.7 × 10-2 S/cm at 85% RH and 8.0 × 10-3 S/cm at 95% RH). Overall, our study highlights the complexity of balancing electronic and ionic transport in hydrated CPEs.

3.
ACS Appl Mater Interfaces ; 13(40): 47499-47510, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590823

RESUMO

Conjugated organic chromophores composed of linked donor (D) and acceptor (A) moieties have attracted considerable attention for photoelectrochemical applications. In this work, we compare the optoelectronic properties and photoelectrochemical performance of two D-A-D structural isomers with thiophene-X-carboxylic acid (X denotes 3 and 2 positions) derivatives and 2,1,3-benzothiadiazole as the D and A moieties, respectively. 5,5'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-3-carboxylic acid), BTD1, and 5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-2-carboxylic acid), BTD2, were employed in the study to understand how structural isomers affect surface attachments within chromophore-catalyst assemblies and their influence on charge-transfer dynamics. Crystal structures revealed that varying the position of the -COOH anchoring group causes the molecules to either contort out of a plane (BTD1) or adopt a near-perfect planar conformation (BTD2). BTD1 and BTD2 were co-loaded with either a water oxidation catalyst, [Ru(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)-(4,4'-((HO)2OPCH2)2-2,2'-bipyridine)(OH2)]2, RuCt2+, or proton reduction catalyst [Ni(P2PhN2C6H4CH2PO3H2)2]2+, NiCt2+, on oxide electrodes to facilitate photodriven water splitting reactions. Emission quenching measurements indicate that both BTD1 and BTD2 inject electrons into n-type SnO2|TiO2 electrodes and holes into p-type NiO semiconductors from their respective excited states at high efficiencies >60%. Photocurrent densities of chromophore-catalyst assemblies obtained using linear sweep voltammetry (LSV) show that BTD2-sensitized photoanodes generate significantly more photocurrent than BTD1-sensitized electrodes; however, both exhibit similar performances at the photocathode. Photoelectrocatyltic measurements demonstrate that both BTD1 and BTD2 performed similarly, generating Faradaic efficiencies of 39 and 38% at the anode or 61 and 79% at the cathode. Transient absorption measurements suggest that the differences between the LSV and photoelectrocatalytic measurements result from the differences in quantum yields of the photogenerated redox equivalents, which is also a reflection of the varying metal oxide surface conformation. Our findings suggest that BTD2 should be investigated further in photocathodic studies since it has the structural advantage of being incorporated into diverse types of chromophore-catalyst assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA