Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073139

RESUMO

Timely and efficient contractions of the smooth muscle of the uterus - the myometrium - are crucial to a successful pregnancy outcome. These episodic contractions are regulated by spontaneous action potentials changing cell and tissue electrical excitability. In this short review we will document and discuss current knowledge of these processes. Those seeking a conclusive account of myometrial pacemaking mechanisms, or indeed a definitive description of the anatomical site of uterine pacemaking, may be disappointed. Rather, after almost a century of investigation, and in spite of promising studies in the last decade or so, there remain many gaps in our knowledge. We review the progress that has been made using recent technologies including in vivo and ex vivo imaging and electrophysiology and computational modelling, taking evidence from studies of animal and human myometrium, with particular emphasis on what may occur in the latter. We have prioritized physiological studies that bring us closer to understanding function. From our analyses we suggest that in human myometrium there is no fixed pacemaking site, but rather mobile, initiation sites produce the connectivity for synchronizing electrical and contractile activity. We call for more studies and funding, as physiological understanding of pacemaking gives hope to being better able to treat clinical conditions such as preterm and dysfunctional labours.

2.
Pflugers Arch ; 475(2): 167-179, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36205782

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αßγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δßγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Simulação de Acoplamento Molecular , Cátions/metabolismo
3.
J Anat ; 243(2): 245-257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841597

RESUMO

The retina has a complex structure with a diverse collection of component cells that work together to facilitate vision. The retinal capillaries supplying the nutritional requirements to the inner retina have an intricate system of neural, glial and vascular elements that interconnect to form the neurovascular unit (NVU). The retina has no autonomic nervous system and so relies on the NVU as an interdependent, physical and functional unit to alter blood flow appropriately to changes in the physiological environment. The importance of this is demonstrated by alterations in NVU function being apparent in the blinding disease diabetic retinopathy and other diseases of the retina. It is, therefore, imperative to understand the anatomy of the components of the NVU that underlie its functioning and in particular the nanoscale arrangements of its heterocellular components. However, information on this in three spatial dimensions is limited. In the present study, we utilised the technique of serial block-face scanning electron microscopy (SBF-SEM), and computational image reconstruction, to enable the first three-dimensional ultrastructural analysis of the NVU in mouse retinal capillaries. Mouse isolated retina was prepared for SBF-SEM and up to 150 serial scanning electron microscopy images (covering z-axes distances of 12-8 mm) of individual capillaries in the superficial plexus and NVU cellular components digitally aligned. Examination of the data in the x-, y- and z-planes was performed with the use of semi-automated computational image analysis tools including segmentation, 3D image reconstruction and quantitation of cell proximities. A prominent feature of the capillary arrangements in 3D was the extensive sheath-like coverage by singular pericytes. They appeared in close register to the basement membrane with which they interwove in a complex mesh-like appearance. Breaks in the basement membrane appeared to facilitate pericyte interactions with other NVU cell types. There were frequent, close (<10 nm) pericyte-endothelial interactions with direct contact points and peg-and-socket-like morphology. Macroglia typically intervened between neurons and capillary structures; however, regions were identified where neurons came into closer contact with the basement membrane. A software-generated analysis to assess the morphology of the different cellular components of the NVU, including quantifications of convexity, sphericity and cell-to-cell closeness, has enabled preliminary semi-quantitative characterisation of cell arrangements with neighbouring structures. This study presents new data on the nanoscale spatial characteristics of components of the murine retinal NVU in 3D that has implications for our understanding of structural integrity (e.g. pericyte-endothelial cell anchoring) and function (e.g. possible paracrine communication between macroglia and pericytes). It also serves as a platform to inform future studies examining changes in NVU characteristics with different biological and disease circumstances. All raw and processed image data have been deposited for public viewing.


Assuntos
Capilares , Retina , Camundongos , Animais , Microscopia Eletrônica de Varredura , Astrócitos , Imageamento Tridimensional
4.
Proteomics ; 19(15): e1900156, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31301205

RESUMO

Advances in liquid chromatography-mass spectrometry have facilitated the incorporation of proteomic studies to many biology experimental workflows. Data-independent acquisition platforms, such as sequential window acquisition of all theoretical mass spectra (SWATH-MS), offer several advantages for label-free quantitative assessment of complex proteomes over data-dependent acquisition (DDA) approaches. However, SWATH data interpretation requires spectral libraries as a detailed reference resource. The guinea pig (Cavia porcellus) is an excellent experimental model for translation to many aspects of human physiology and disease, yet there is limited experimental information regarding its proteome. To overcome this knowledge gap, a comprehensive spectral library of the guinea pig proteome is generated. Homogenates and tryptic digests are prepared from 16 tissues and subjected to >200 DDA runs. Analysis of >250 000 peptide-spectrum matches resulted in a library of 73 594 peptides from 7666 proteins. Library validation is provided by i) analyzing externally derived SWATH files (https://doi.org/10.1016/j.jprot.2018.03.023) and comparing peptide intensity quantifications; ii) merging of externally derived data to the base library. This furnishes the research community with a comprehensive proteomic resource that will facilitate future molecular-phenotypic studies using (re-engaging) the guinea pig as an experimental model of relevance to human biology. The spectral library and raw data are freely accessible in the MassIVE repository (MSV000083199).


Assuntos
Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Animais , Cobaias , Peptídeos/análise
7.
Reprod Biol Endocrinol ; 13: 83, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238508

RESUMO

BACKGROUND: During pregnancy, myometrial gene and protein expression is tightly regulated to accommodate fetal growth, promote quiescence and ultimately prepare for the onset of labour. It is proposed that changes in calcium signalling, may contribute to regulating gene expression and that nuclear factor of activated T-cell (NFAT) transcription factors (isoforms c1-c4) may be involved. Currently, there is little information regarding NFAT expression and regulation in myometrium. METHODS: This study examined NFAT isoform mRNA expression in human myometrial tissue and cells from pregnant women using quantitative PCR. The effects of the Ca(2+) ionophore A23187 and in vitro stretch (25 % elongation, static strain; Flexercell FX-4000 Tension System) on NFAT expression were determined in cultured human myometrial cells. RESULTS: Human myometrial tissue and cultured cells expressed NFATc1-c4 mRNA. NFATc2 gene expression in cultured cells was increased in response to 6 h stretch (11.5 fold, P < 0.001, n = 6) and calcium ionophore (A23187, 5 µM) treatment (20.6 fold, P < 0.001, n = 6). This response to stretch was significantly reduced (90 %, P < 0.001, n = 10) in the presence of an intracellular calcium chelator, BAPTA-AM (20 µM). CONCLUSIONS: These data suggest that NFATc2 expression is regulated by intracellular calcium and in vitro stretch, and that the stretch response in human myometrial cells is dependent upon intracellular calcium signalling pathways. Our findings indicate a potentially unique role for NFATc2 in mediating stretch-induced gene expression per se and warrant further exploration in relation to the mechanisms promoting uterine smooth muscle growth in early pregnancy and/or labour.


Assuntos
Regulação da Expressão Gênica , Miométrio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miométrio/efeitos dos fármacos , Fatores de Transcrição NFATC/genética , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Contração Uterina/fisiologia
8.
Mol Hum Reprod ; 20(5): 433-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24356876

RESUMO

The discrete regulation of vascular tone in the human uterine and placental circulations is a key determinant of appropriate uteroplacental blood perfusion and pregnancy success. Humoral factors such as estrogen, which increases in the placenta and maternal circulation throughout human pregnancy, may regulate these vascular beds as studies of animal arteries have shown that 17ß-estradiol, or agonists of estrogen receptors (ER), can exert acute vasodilatory actions. The aim of this study was to compare how acute exposure to ER-specific agonists, and 17ß-estradiol, altered human placental and uterine arterial tone in vitro. Uterine and placental arteries were isolated from biopsies obtained from women with uncomplicated pregnancy delivering a singleton infant at term. Vessels were mounted on a wire myograph, exposed to the thromboxane receptor agonist U46619 (10(-6) M), and then incubated with incremental doses (5 min, 0.03-30 µM) of either 17ß-estradiol or agonists specific for the ERs ERα (PPT), ERß (DPN) or the G-protein-coupled estrogen receptor GPER-1 (G1). ERα and ERß mRNA expression was assessed. 17ß-estradiol, PPT and DPN each relaxed myometrial arteries (P < 0.05) in a manner that was partly endothelium-dependent. In contrast, 17ß-estradiol or DPN relaxed placental arteries (maximum relaxation to 42 ± 1.1 or 47.6 ± 6.53% of preconstriction, respectively) to a lesser extent than myometrial arteries (to 0.03 ± 0.03 or 8.0 ± 1.0%) and in an endothelial-independent manner whereas PPT was without effect. G1 exposure did not inhibit the constriction of myometrial nor placenta arteries. mRNA expression of ERα and ERß was greater in myometrial arteries than placental arteries. ER-specific agonists, and 17ß-estradiol, differentially modulate the tone of uterine versus placental arteries highlighting that estrogen may regulate human uteroplacental blood flow in a tissue-specific manner.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Estrogênios/farmacologia , Placenta/irrigação sanguínea , Artéria Uterina/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Artéria Uterina/metabolismo
9.
Open Forum Infect Dis ; 11(6): ofae272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872850

RESUMO

Background: A future Streptococcus pyogenes (Strep A) vaccine will ideally prevent a significant burden of lower limb cellulitis; however, natural immune responses to proposed vaccine antigens following an episode of cellulitis remain uncharacterized. Methods: We enrolled 63 patients with cellulitis and 26 with invasive beta hemolytic streptococci infection, using a multiplexed assay to measure immunoglobulin G against Strep A vaccine candidate antigens, including: streptolysin O (SLO), deoxyribonuclease B (DNB), group A carbohydrate (GAC), C5a peptidase (ScpA), cell envelope proteinase (SpyCEP), and adhesion and division protein (SpyAD). Responses in the invasive cohort were used to predict the infecting etiology in the cellulitis cohort. Results: Of 41 patients with cellulitis and paired serological samples, 68.3% had evidence of beta hemolytic streptococci infection by conventional anti-SLO and/or anti-DNB criteria. A positive serological response to at least 1 of the tested antigens was seen in 78.0% of the cellulitis cohort. Individually, anti-SLO (58.5%), anti-SpyAD (46.3%), and anti-ScpA (39.0%) were the most common. Based on principal component analysis, increases in these 3 antibodies, without responses to DNB, GAC, and SpyCEP characterized Streptococcus dysgalactiae subspecies equisimilis (SDSE) infection. Conclusions: SDSE appears to be the predominant cause of lower limb cellulitis. Effective Strep A vaccines incorporating antigens that provide additional cross protection against SDSE may prevent a significant burden of lower limb cellulitis.

10.
J Cell Mol Med ; 16(8): 1720-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21973085

RESUMO

Caveolin-1, an integral protein of caveolae, is associated with multiple cardiovascular signalling pathways. Caveolin-1 knockout (KO) mice have a reduced lifespan. As changes in artery structure and function are associated with ageing we have investigated the role of caveolin-1 ablation on age-related changes of small artery contractility and passive mechanical properties. Mesenteric small arteries isolated from 3 and 12-month wild-type (WT) and caveolin-1 KO mice were mounted on a pressure myograph and changes in passive and functional arterial properties were continuously monitored. In WT mice ageing was associated with a reduction in arterial contractility to noradrenaline which was reversed by inhibition of nitric oxide synthase with L-NNA. Similarly, in 3-month-old mice, caveolin-1 KO reduced contractility to noradrenaline by an L-NNA-sensitive mechanism. However, ageing in caveolin-1 KO mice was not associated with any further change in contractility. In WT mice ageing was associated with an increased passive arterial diameter and cross-sectional area (CSA), consistent with outward remodelling of the arterial wall, and a reduced arterial distensibility. Caveolin-1 ablation at 3 months of age resulted in similar changes in passive arterial properties to those observed with ageing in WT animals. However, ageing in caveolin-1 KO mice resulted in a reduced arterial CSA indicating different effects on passive structural characteristics from that observed in WT mice. Thus, caveolin-1 mice show abnormalities of small mesenteric artery function and passive mechanical characteristics indicative of premature vascular ageing. Moreover, caveolin-1 ablation modulates the age-related changes usually observed in mesenteric arteries of WT mice.


Assuntos
Envelhecimento/patologia , Caveolina 1/deficiência , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Envelhecimento/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Deleção de Genes , Genótipo , Técnicas In Vitro , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Biológicos , Norepinefrina/farmacologia , Reprodutibilidade dos Testes
11.
J Biol Chem ; 286(39): 34346-55, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21803775

RESUMO

Phosphorylation of heat shock protein 20 (Hsp20) by protein kinase A (PKA) is now recognized as an important regulatory mechanism modulating contractile activity in the human myometrium. Thus agonists that stimulate cyclic AMP production may cause relaxation with resultant beneficial effects on pathologies that affect this tissue such as the onset of premature contractions prior to term. Here we describe for the first time that acetylation of Hsp20 is also a potent post-translational modification that can affect human myometrial activity. We show that histone deacetylase 8 (HDAC8) is a non-nuclear lysine deacetylase (KDAC) that can interact with Hsp20 to affect its acetylation. Importantly, use of a selective linkerless hydroxamic acid HDAC8 inhibitor increases Hsp20 acetylation with no elevation of nuclear-resident histone acetylation nor marked global gene expression changes. These effects are associated with significant inhibition of spontaneous and oxytocin-augmented contractions of ex vivo human myometrial tissue strips. A potential molecular mechanism by which Hsp20 acetylation can affect myometrial activity by liberating cofilin is described and further high-lights the use of specific effectors of KDACs as therapeutic agents in regulating contractility in this smooth muscle.


Assuntos
Proteínas de Choque Térmico HSP20/metabolismo , Miométrio/metabolismo , Miométrio/fisiologia , Contração Uterina/fisiologia , Acetilação/efeitos dos fármacos , Fatores de Despolimerização de Actina/metabolismo , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Miométrio/citologia , Ocitócicos/farmacologia , Ocitocina/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Contração Uterina/efeitos dos fármacos
12.
Am J Obstet Gynecol ; 207(1): 76.e15-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22727353

RESUMO

OBJECTIVE: Endogenous uterine agonists can activate numerous signaling pathways to effect increased force. Our objective was to assess expression of key constituents of these pathways, in alliance with contractile function, through late gestation and during term and preterm labor. STUDY DESIGN: Using myography, we measured the response to 3 agonists compared with depolarization alone (K(+), 124 mEq/L) and calculated agonist/depolarization ratio. We measured gene expression using quantitative reverse transcription-polymerase chain reaction. RESULTS: Contractile responsiveness to depolarization alone, oxytocin, or endothelin-1 increased during pregnancy compared with nonpregnant animals. The agonist/depolarization ratio did not change during uterine activation or parturition. Inhibition of rhoA-associated kinase decreased responses to oxytocin in all tissues, but significantly more during uterine activation. Expression of rhoA and rhoA-associated kinase was increased significantly in active labor at term or preterm. CONCLUSION: The rhoA/rhoA-associated kinase pathway is a key regulator of uterine activation during labor and may be a useful target for the prevention of spontaneous preterm birth.


Assuntos
Parto/metabolismo , Gravidez/fisiologia , Contração Uterina/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Endotelina-1/metabolismo , Feminino , Modelos Animais , Miografia , Ocitocina/metabolismo , Potássio/metabolismo , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases Associadas a rho/antagonistas & inibidores
13.
Comput Methods Programs Biomed ; 223: 106967, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763875

RESUMO

BACKGROUND AND OBJECTIVE: The uterine electrohysterogram (EHG) contains important information about electrical signal propagation which may be useful to monitor and predict the progress of pregnancy towards parturition. Directed information processing has the potential to be of use in studying EHG recordings. However, so far, there is no directed information-based estimation scheme that has been applied to investigating the propagation of human EHG recordings. To realize this, the approach of directed information and its reliability and adaptability should be scientifically studied. METHODS: We demonstrated an estimation scheme of directed information to identify the spatiotemporal relationship between the recording channels of EHG signal and assess the algorithm reliability initially using simulated data. Further, a regional identification of information flow termination (RIIFT) approach was developed and applied for the first time to extant multichannel EHG signals to reveal the terminal zone of propagation of the electrical activity associated with uterine contraction. RIIFT operates by estimating the pairwise directed information between neighboring EHG channels and identifying the location where there is the strongest inward flow of information. The method was then applied to publicly-available experimental data obtained from pregnant women with the use of electrodes arranged in a 4-by-4 grid. RESULTS: Our results are consistent with the suggestions from the previous studies with the added identification of preferential sites of excitation termination - within the estimated area, the direction of surface action potential propagation towards the medial axis of uterus during contraction was discovered for 72.15% of the total cases, demonstrating that our RIIFT method is a potential tool to investigate EHG propagation for advancing our understanding human uterine excitability. CONCLUSIONS: We developed a new approach and applied it to multichannel human EHG recordings to investigate the electrical signal propagation involved in uterine contraction. This provides an important platform for future studies to fill knowledge gaps in the spatiotemporal patterns of electrical excitation of the human uterus.


Assuntos
Contração Uterina , Útero , Algoritmos , Eletromiografia/métodos , Feminino , Humanos , Monitorização Fisiológica/métodos , Gravidez , Reprodutibilidade dos Testes
14.
BMJ Case Rep ; 15(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790324

RESUMO

Leprosy is a chronic granulomatous infection predominantly involving the skin and peripheral nervous system. The condition is caused by infection with the obligate intracellular bacillus Mycobacterium leprae and the clinical phenotype is largely dependent on the host immune response to the organism. Transmission is suspected to occur via respiratory secretions with infection usually requiring prolonged periods of contact. The incubation period is highly variable with disease manifestations appearing up to several decades after the initial exposure. The disease can be broadly divided into 'paucibacillary' and 'multibacillary', and treatment with multidrug therapy including dapsone, clofazimine and rifampicin offers high rates of cure. Here, we report of a case of leprosy with a suspected incubation period in excess of 50 years following occupational exposure in rural Australia. To our knowledge, this incubation period is the longest reported to date.


Assuntos
Hanseníase Multibacilar , Hanseníase , Quimioterapia Combinada , Humanos , Período de Incubação de Doenças Infecciosas , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase Multibacilar/diagnóstico , Hanseníase Multibacilar/tratamento farmacológico , Mycobacterium leprae
15.
IEEE Rev Biomed Eng ; 15: 341-353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32915747

RESUMO

The relatively limited understanding of the physiology of uterine activation prevents us from achieving optimal clinical outcomes for managing serious pregnancy disorders such as preterm birth or uterine dystocia. There is increasing awareness that multi-scale computational modeling of the uterus is a promising approach for providing a qualitative and quantitative description of uterine physiology. The overarching objective of such approach is to coalesce previously fragmentary information into a predictive and testable model of uterine activity that, in turn, informs the development of new diagnostic and therapeutic approaches to these pressing clinical problems. This article assesses current progress towards this goal. We summarize the electrophysiological basis of uterine activation as presently understood and review recent research approaches to uterine modeling at different scales from single cell to tissue, whole organ and organism with particular focus on transformative data in the last decade. We describe the positives and limitations of these approaches, thereby identifying key gaps in our knowledge on which to focus, in parallel, future computational and biological research efforts.


Assuntos
Nascimento Prematuro , Simulação por Computador , Feminino , Humanos , Recém-Nascido , Pelve , Gravidez , Útero/fisiologia
16.
Methods Mol Biol ; 2383: 459-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766307

RESUMO

Diseases involving dysfunction of smooth muscle cells present a major health and socioeconomic burden, and have remained stubbornly resistant to standard therapeutic strategies. Examples include many cardiovascular diseases and spontaneous preterm birth, a complication affecting up to 11% of all pregnancies worldwide. This fuels the continued search for new drug delivery strategies to treat these conditions. The use of cell penetrating peptides (CPPs) for this purpose remains a promising, if as yet unrealized, avenue to explore. In part, this may relate to a paucity of studies investigating the application of CPPs as drug delivery vectors to human smooth muscle cells and tissues. We have sought to address this knowledge gap by reporting methods for examining the uptake of different CPP-cargo vectors to human uterine and vascular smooth muscle cells. In particular, we report here (a) that four different CPP-fluorophore conjugates, spanning masses of 1309-3435 Da, and net charges of +2 to +7, can be delivered to human isolated uterine smooth muscle cells without inducing cell toxicity; (b) that the cargo delivered by such CPPs can be fluorescent moieties and/or biologically active peptides; (c) that CPP delivery in a short time frame to native smooth muscle cells in human tissues ex vivo can be achieved. Further exploration of CPPs as tools to facilitate targeted drug delivery to native human smooth muscle tissues will assist in improving our understanding of scientific mechanisms underlying major diseases involving smooth muscle dysfunction as well as facilitating therapeutic investigations.


Assuntos
Miócitos de Músculo Liso , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Recém-Nascido , Preparações Farmacêuticas , Gravidez , Nascimento Prematuro
17.
Front Cardiovasc Med ; 9: 980628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035957

RESUMO

Background: Adequate blood flow into coronary micro-arteries is essential for myocardial function. Here we assess the mechanisms responsible for amplifying blood flow into myogenically-contracting human and porcine intramyocardial micro-arteries ex vivo using endothelium-dependent and -independent vasodilators. Methods: Human and porcine atrial and ventricular small intramyocardial coronary arteries (IMCAs) were studied with pressure myography and imaged using confocal microscopy and serial section/3-D reconstruction EM. Results: 3D rendered ultrastructure images of human right atrial (RA-) IMCAs revealed extensive homo-and hetero-cellular contacts, including to longitudinally-arranged smooth muscle cells (l-SMCs) found between the endothelial cells (ECs) and radially-arranged medial SMCs (r-SMCs). Local and conducted vasodilatation followed focal application of bradykinin in both human and porcine RA-IMCAs, and relied on hyperpolarization of SMCs, but not nitric oxide. Bradykinin initiated asynchronous oscillations in endothelial cell Ca2+ in pressurized RA-IMCAs and, as previously shown in human RA-IMCAs, hyperpolarized porcine arteries. Immunolabelling showed small- and intermediate-conductance Ca2+-activated K+ channels (KCa) present in the endothelium of both species, and concentration-dependent vasodilation to bradykinin followed activation of these KCa channels. Extensive electrical coupling was demonstrated between r-SMCs and l-SMCs, providing an additional pathway to facilitate the well-established myoendothelial coupling. Conducted dilation was still evident in a human RA-IMCA with poor myogenic tone, and heterocellular contacts were visible in the 3D reconstructed artery. Hyperpolarization and conducted vasodilation was also observed to adenosine which, in contrast to bradykinin, was sensitive to combined block of ATP-sensitive (KATP) and inwardly rectifying (KIR) K+ channels. Conclusions: These data extend our understanding of the mechanisms that coordinate human coronary microvascular blood flow and the mechanistic overlap with porcine IMCAs. The unusual presence of l-SMCs provides an additional pathway for rapid intercellular signaling between cells of the coronary artery wall. Local and conducted vasodilation follow hyperpolarization of the ECs or SMCs, and contact-coupling between l-SMCs and r-SMCs likely facilitates this vasodilation.

18.
Cardiovasc Res ; 118(8): 1978-1992, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34173824

RESUMO

AIMS: Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS: Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION: These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.


Assuntos
Doenças das Valvas Cardíacas , Músculo Liso Vascular , Animais , Vasos Coronários/patologia , Doenças das Valvas Cardíacas/metabolismo , Humanos , Contração Muscular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Suínos
19.
J Extracell Vesicles ; 11(12): e12295, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36544284

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.


Assuntos
Vesículas Extracelulares , Degeneração Macular , Humanos , Epitélio Pigmentado da Retina/metabolismo , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Macular/metabolismo , Fenótipo
20.
J Clin Invest ; 118(12): 3829-32, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033650

RESUMO

During pregnancy, the muscular layer of the uterine wall known as the myometrium, which is composed mainly of smooth muscle cells, is maintained in a state of relative quiescence. A switch from myometrial quiescence to myometrial activation is required to establish uterine contractions during labor. Researchers have long been perplexed by the fact that the major prostaglandin produced by the uterus just prior to labor, prostacyclin, is a smooth muscle relaxant. In this issue of the JCI, Fetalvero et al. provide data that they propose explains this paradox, at least in part (see the related article beginning on page 3966). The authors examined uterine tissue from pregnant women near term and found that prostacyclin stimulation, which raises cAMP levels that were previously thought to affect only myometrial quiescence, can promote myometrial activation over time by increasing the expression of a select group of proteins thought to be indicative of a uterine contractile state.


Assuntos
Epoprostenol/metabolismo , Miométrio/metabolismo , Parto/fisiologia , Gravidez/fisiologia , Transdução de Sinais/fisiologia , Contração Uterina/fisiologia , Adulto , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/biossíntese , Epoprostenol/farmacologia , Feminino , Junções Comunicantes/metabolismo , Humanos , Ocitócicos/farmacologia , Ocitocina/farmacologia , Parto/efeitos dos fármacos , Gravidez/efeitos dos fármacos , Receptores de Epoprostenol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Contração Uterina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA