Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446373

RESUMO

A series of 3-substituted and 3,5-disubstituted rhodanine-based derivatives were synthesized from 3-aminorhodanine and examined for α-amylase inhibitory, DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities in vitro. These derivatives displayed significant α-amylase inhibitory potential with IC50 values of 11.01-56.04 µM in comparison to standard acarbose (IC50 = 9.08 ± 0.07 µM). Especially, compounds 7 (IC50 = 11.01 ± 0.07 µM) and 8 (IC50 = 12.01 ± 0.07 µM) showed highest α-amylase inhibitory activities among the whole series. In addition to α-amylase inhibitory activity, all compounds also demonstrated significant scavenging activities against DPPH and ABTS radicals, with IC50 values ranging from 12.24 to 57.33 and 13.29-59.09 µM, respectively, as compared to the standard ascorbic acid (IC50 = 15.08 ± 0.03 µM for DPPH; IC50 = 16.09 ± 0.17 µM for ABTS). These findings reveal that the nature and position of the substituents on the phenyl ring(s) are crucial for variation in the activities. The structure-activity relationship (SAR) revealed that the compounds bearing an electron-withdrawing group (EWG) at para substitution possessed the highest activity. In kinetic studies, only the km value was changed, with no observed changes in Vmax, indicating a competitive inhibition. Molecular docking studies revealed important interactions between compounds and the α-amylase active pocket. Further advanced research needs to perform on the identified compounds in order to obtain potential antidiabetic agents.

2.
Arch Pharm (Weinheim) ; : e2400325, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885529

RESUMO

A library of imidazole-thiadiazole compounds (1-24) was synthesized to explore their therapeutic applications. The compounds were subjected to meticulous in vitro evaluation against α-glucosidase, α-amylase, acetylcholinesterase (AChE), and butylcholinesterase (BChE) enzymes. Compounds were also investigated for antioxidant activities using cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Derivatives 5-7, 9-11, 18, and 19 displayed potent inhibitory activities with IC50 values of 1.4 ± 0.01 to 13.6 ± 0.01 and 0.9 ± 0.01 to 12.8 ± 0.02 µM against α-glucosidase, and α-amylase enzymes, respectively, compared to the standard acarbose (IC50 = 14.8 ± 0.01 µM). Compounds 11-13, 16, 20, and 21 exhibited potent activity IC50 = 8.6 ± 0.02 to 34.7 ± 0.03 µM against AChE enzyme, compared to donepezil chloride (IC50 = 39.2 ± 0.05 µM). Compound 21 demonstrated comparable inhibition IC50 = 45.1 ± 0.09 µM against BChE, compared to donepezil chloride (IC50 = 44.2 ± 0.05 µM). All compounds also demonstrated excellent antioxidant activities via CUPRAC, FRAP, and DPPH methods. Complementing the experimental studies, extensive kinetics, ADME/T, and molecular docking analysis were also conducted to unravel the pharmacokinetics and safety profiles of the designed compounds. These studies supported the experimental findings and facilitated the prioritization of hit candidates for subsequent stages of drug development.

3.
Mol Divers ; 27(2): 767-791, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35604512

RESUMO

A two-step reaction method was used to synthesize a series of rhodanine-based Schiff bases (2-33) that were characterized using spectroscopic techniques. All compounds were assessed for α-amylase inhibitory and radical scavenging (DPPH and ABTS) activities. In comparison to the standard acarbose (IC50 = 9.08 ± 0.07 µM), all compounds demonstrated good to moderate α-amylase inhibitory activity (IC50 = 10.91 ± 0.08-61.89 ± 0.102 µM). Compounds also demonstrated significantly higher DPPH (IC50 = 10.33 ± 0.02-96.65 ± 0.03 µM) and ABTS (IC50 = 12.01 ± 0.12-97.47 ± 0.13 µM) radical scavenging activities than ascorbic acid (DPPH, IC50 = 15.08 ± 0.03 µM; ABTS, IC50 = 16.09 ± 0.17 µM). The limited structure-activity relationship (SAR) suggests that the position and nature of the substituted groups on the phenyl ring have a vital role in varying inhibitory potential. Among the series, compounds with an electron-withdrawing group at the para position showed the highest potency. Kinetic studies revealed that the compounds followed a competitive mode of inhibition. Molecular docking results are found to agree with experimental findings, showing that compounds reside in the active pocket due to the main rhodanine moiety.


Assuntos
Rodanina , Rodanina/farmacologia , Simulação de Acoplamento Molecular , Bases de Schiff/química , Cinética , Compostos de Bifenilo/química , Relação Estrutura-Atividade , alfa-Amilases/química , Estrutura Molecular
4.
Arch Pharm (Weinheim) ; 356(1): e2200400, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284484

RESUMO

Herein, a library of novel pyridone derivatives 1-34 was designed, synthesized, and evaluated for α-amylase and α-glucosidase inhibitory as well as antioxidant activities. Pyridone derivatives 1-34 were synthesized via a one-pot multi-component reaction of variously substituted aromatic aldehydes, acetophenone, ethyl cyanoacetate, and ammonium acetate in absolute ethanol. Synthetic compounds 1-34 were structurally characterized by different spectroscopic techniques. Most of the tested compounds showed more promising inhibition potential than the standard acarbose (IC50 = 14.87 ± 0.16 µM) but compounds 13 and 12 were found to be the most potent compounds with IC50 values of 9.20 ± 0.14 µM and 3.05 ± 0.18 µM against α-amylase and α-glucosidase enzymes, respectively. Compounds 1-34 also displayed moderate antioxidant potential in the range of IC50 = 96.50 ± 0.45 to 189.98 ± 1.00 µM in comparison to the control butylated hydroxytoluene (BHT) (IC50 = 66.50 ± 0.36 µM), in DPPH radical scavenging activities. Additionally, all synthetic derivatives were subjected to a molecular docking study to investigate the interaction details of compounds 1-34 (ligands) with the active site of enzymes (receptors). These results indicate that the newly synthesized pyridone class may serve as promising lead candidates for controlling diabetes mellitus and as antioxidants.


Assuntos
Antioxidantes , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
5.
Arch Pharm (Weinheim) ; 356(12): e2300384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806747

RESUMO

A library of 22 derivatives of 1,3,4-oxadiazole-2-thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α-glucosidase and α-amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive-type inhibition for α-amylase, noncompetitive-type inhibition for α-glucosidase and AChE, and mixed-type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , alfa-Glucosidases/metabolismo , Acarbose , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , alfa-Amilases
6.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677616

RESUMO

Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.


Assuntos
Doença de Alzheimer , Humanos , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Estrutura Molecular
7.
Mol Divers ; 26(2): 849-868, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650031

RESUMO

A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 µM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 µM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 µM for α-amylase and IC50 = 17.67 ± 0.09 µM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.


Assuntos
Diabetes Mellitus , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , alfa-Amilases/metabolismo , alfa-Glucosidases/química
8.
Chem Biodivers ; 19(10): e202200323, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35997224

RESUMO

This work reports the convenient strategy for the synthesis of bis-thiazolidinone based chalcone analogs (1-20) from readily available thiosemicarbazide hydrochloride, ammonium thiocyanate and benzaldehyde. All the newly afforded bis-thiazolidinone based chalcone analogs (1-20) were screened in vitro for their acetylcholinesterase and butyrylcholinesterase inhibition profile. It was noteworthy, that all the synthetic analogs (except analogs 10, 12 and 14, which are found to be inactive) showed moderate to good inhibitory potentials on screening against acetylcholinesterase having range of inhibitory with IC50 values from 0.070±0.050 to 7.60±0.10 µM, and similarly for butyrylcholinesterase with range IC50 values from 0.10±0.050 µM to 10.70±0.20 µM, respectively as compared to standard Donepezil inhibitor (IC50 =2.16±0.12 µM), (IC50 =4.5±0.11 µM).Among the series, the analogs with hydroxy group showed superior inhibitory potentials against acetylcholinesterase and butyrylcholinesterase enzymes. Therefore, analog 20 (IC50 =0.070±0.050 µM), (IC50 =0.10±0.050 µM) bearing trihydroxy substitutions on ortho-, meta- and para-position of both rings A and B was found to be the most active inhibitor of acetylcholinesterase and butyrylcholinesterase enzymes among the current synthesized series (1-23). Analog 19 (IC50 =0.15±0.050 µM), (IC50 =0.20±0.050 µM) bearing dihydroxy substitutions on ortho- and meta-position of both ring A and ring B was identified as the second most potent inhibitor against both these enzymes. Interestingly, the compound (16) (IC50 =1.50±0.10 µM against AChE) has a better selectivity index (2.60) than standard Donepezil drug (2.083) for AChE over BuChE. The different types of spectroscopic techniques such as HR-EI-MS, 1 H- and 13 C- NMR were used to confirm the structure of all the newly synthetics analogs. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.


Assuntos
Chalcona , Chalconas , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Benzaldeídos , Chalcona/química , Donepezila , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Estrutura Molecular
9.
Arch Pharm (Weinheim) ; 355(6): e2100481, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355329

RESUMO

Diabetes mellitus is one of the most prevalent diseases nowadays. Several marketed drugs are available for the cure and treatment of diabetes, but there is still a dire need of introducing compatible drug molecules with lesser side effects. The current study is based on the synthesis of isatin thiazole derivatives 4-30 via the Hantzsch reaction. The synthetic compounds were characterized using different spectroscopic techniques and evaluated for their α-amylase and α-glucosidase inhibition potential. Of 27 isatin thiazoles, five (4, 5, 10, 12, and 16) displayed good activities against the α-amylase enzyme with IC50 values in the range of 22.22 ± 0.02-27.01 ± 0.06 µM, and for α-glucosidase, the IC50 values of these compounds were in the range of 20.76 ± 0.17-27.76 ± 0.17 µM, respectively. The binding interactions of the active molecules within the active site of enzymes were studied with the help of molecular docking studies. In addition, kinetic studies were carried out to examine the mechanism of action of the synthetic molecules as well. Compounds 3a, 4, 5, 10, 12, and 16 were also examined for their cytotoxic effect and were found to be noncytotoxic. Thus, several molecules were identified as good antihyperglycemic agents, which can be further modified to enhance inhibition ability and to find the lead molecule that can act as a potential antidiabetic agent.


Assuntos
Hipoglicemiantes , Isatina , Tiazóis , Diabetes Mellitus , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Isatina/síntese química , Isatina/farmacologia , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo
10.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364195

RESUMO

The current study was conducted to obtain hybrid analogues of indole-based thiadiazole derivatives (1-16) in which a number of reaction steps were involved. To examine their biological activity in the presence of the reference drug Donepezil (0.21 ± 0.12 and 0.30 ± 0.32 M, respectively), the inhibitory potentials of AChE and BuChE were determined for these compounds. Different substituted derivatives showing a varied range of inhibitory profiles, when compared to the reference drug, analogue 8 was shown to have potent activity, with IC50 values for AchE 0.15 ± 0.050 M and BuChE 0.20 ± 0.10, respectively, while other substituted compounds displayed good to moderate potentials. Varied spectroscopic techniques including 1H, 13CNMR and HREI-MS were used to identify the basic skeleton of these compounds. Furthermore, all analogues have a known structure-activity relationship (SAR), and molecular docking investigations have verified the binding interactions of molecule to the active site of enzymes.


Assuntos
Acetilcolinesterase , Tiadiazóis , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Tiadiazóis/farmacologia , Tiadiazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Indóis/farmacologia
11.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144820

RESUMO

Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Aminoácidos , Benzimidazóis/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Donepezila , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia
12.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615218

RESUMO

Triazole-based thiosemicarbazone derivatives (6a-u) were synthesized then characterized by spectroscopic techniques, such as 1HNMR and 13CNMR and HRMS (ESI). Newly synthesized derivatives were screened in vitro for inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. All derivatives (except 6c and 6d, which were found to be completely inactive) demonstrated moderate to good inhibitory effects ranging from 0.10 ± 0.050 to 12.20 ± 0.30 µM (for AChE) and 0.20 ± 0.10 to 14.10 ± 0.40 µM (for BuChE). The analogue 6i (IC50 = 0.10 ± 0.050 for AChE and IC50 = 0.20 ± 0.050 µM for BuChE), which had di-substitutions (2-nitro, 3-hydroxy groups) at ring B and tri-substitutions (2-nitro, 4,5-dichloro groups) at ring C, and analogue 6b (IC50 = 0.20 ± 0.10 µM for AChE and IC50 = 0.30 ± 0.10 µM for BuChE), which had di-Cl at 4,5, -NO2 groups at 2-position of phenyl ring B and hydroxy group at ortho-position of phenyl ring C, emerged as the most potent inhibitors of both targeted enzymes (AChE and BuChE) among the current series. A structure-activity relationship (SAR) was developed based on nature, position, number, electron donating/withdrawing effects of substitution/s on phenyl rings. Molecular docking studies were used to describe binding interactions of the most active inhibitors with active sites of AChE and BuChE.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Tiossemicarbazonas , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico
13.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296520

RESUMO

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiossemicarbazonas , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Acarbose , Tiossemicarbazonas/farmacologia , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Benzimidazóis/química , Estrutura Molecular
14.
Bioorg Chem ; 110: 104808, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756236

RESUMO

We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 µM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , alfa-Glucosidases/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Ratos , Ratos Wistar , Estreptozocina , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
15.
Bioorg Chem ; 106: 104489, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272713

RESUMO

Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevelance worldwide. In the current study, twenty-seven azachalcone derivatives 3-29 were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds 3 (IC50 = 23.08 ± 0.03 µM), (IC50 = 26.08 ± 0.43 µM), 5 (IC50 = 24.57 ± 0.07 µM), (IC50 = 27.57 ± 0.07 µM), 6 (IC50 = 24.94 ± 0.12 µM), (IC50 = 27.13 ± 0.08 µM), 16 (IC50 = 27.57 ± 0.07 µM), (IC50 = 29.13 ± 0.18 µM), and 28 (IC50 = 26.94 ± 0.12 µM) (IC50 = 27.99 ± 0.09 µM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, respectively. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The molecular docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.


Assuntos
Compostos Aza/farmacologia , Chalconas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
16.
Bioorg Chem ; 108: 104638, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33508679

RESUMO

A series of nineteen (1-19) indole-based-thiadiazole derivatives were synthesized, characterized by 1HNMR, 13C NMR, MS, and screened for α-glucosidase inhibition. All analogs showed varied α-glucosidase inhibitory potential with IC50 value ranged between 0.95 ± 0.05 to 13.60 ± 0.30 µM, when compared with the standard acarbose (IC50 = 1.70 ± 0.10). Analogs 17, 2, 1, 9, 7, 3, 15, 10, 16, and 14 with IC50 values 0.95 ± 0.05, 1.10 ± 0.10, 1.30 ± 0.10, 1.60 ± 0.10, 2.30 ± 0.10, 2.30 ± 0.10, 2.80 ± 0.10, 4.10 ± 0.20 and 4.80 ± 0.20 µM respectively showed highest α-glucosidase inhibition. All other analogs also exhibit excellent inhibitory potential. Structure activity relationships have been established for all compounds primarily based on substitution pattern on the phenyl ring. Through molecular docking study, binding interactions of the most active compounds were confirmed. We further studied the kinetics study of analogs 1, 2, 9 and 17 and found that they are Non-competitive inhibitors.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Tiadiazóis/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Indóis/química , Estrutura Molecular , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
17.
Bioorg Chem ; 115: 105199, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329995

RESUMO

Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.


Assuntos
Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Urease/antagonistas & inibidores , Animais , Antinematódeos/síntese química , Antinematódeos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Urease/metabolismo
18.
Mol Divers ; 25(1): 143-157, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31965436

RESUMO

Novel ibuprofen derivatives 1-19 including ibuprofen hydrazide 1, and substituted thiourea derivatives 2-19 were synthesized and characterized by EI-MS, FAB-MS, HREI-MS, HRFAB-MS, 1H-, and 13C-NMR spectroscopic techniques. The synthetic molecules 1-19 were examined for their in vitro urease inhibition and were found to display a diversified degree of inhibitory potential in the range of IC50 = 2.96-178 µM as compared to the standard thiourea (IC50 = 21.32 ± 0.22 µM). Out of nineteen, thirteen derivatives 2-4, 6, 7, 9, 11-15, 17, and 18 demonstrated remarkable inhibitory activity with IC50 values of 2.96 ± 1.11 to 16.1 ± 1.07 µM, compound 5 exhibited moderate inhibition with IC50 value of 37.3 ± 0.41 µM, whereas, compounds 1, 8, and 10 demonstrated weak inhibition against urease enzyme. Almost all structural features are participating in the activity; however, limited structure-activity relationship was discussed on the basis of different structural features, i.e., different functional groups and their positions at aryl part. In addition, molecular docking study was performed in order to understand the ligands binding interactions with the active site of urease enzyme.


Assuntos
Ibuprofeno/química , Preparações Farmacêuticas/química , Urease/antagonistas & inibidores , Biologia/métodos , Domínio Catalítico , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade
19.
Mol Divers ; 25(2): 995-1009, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301032

RESUMO

The ß-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising ß-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro ß-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the ß-glucuronidase and displayed significant binding interactions with essential residues.


Assuntos
Glicoproteínas , Hidrazonas , Indóis , Glucuronidase/antagonistas & inibidores , Glucuronidase/química , Glicoproteínas/síntese química , Glicoproteínas/química , Hidrazonas/síntese química , Hidrazonas/química , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular
20.
Bioorg Med Chem ; 28(21): 115605, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065441

RESUMO

One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 µM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 µM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 µM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/síntese química , Indóis/química , alfa-Glucosidases/metabolismo , Acrilonitrila/química , Sítios de Ligação , Domínio Catalítico , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Indóis/metabolismo , Indóis/uso terapêutico , Simulação de Acoplamento Molecular , Solubilidade , Relação Estrutura-Atividade , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA