Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(23): 235205, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553481

RESUMO

Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

2.
Sci Signal ; 1(42): ra10, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18941139

RESUMO

The application of complex system engineering approaches to cell signaling networks should lead to novel understandings and, subsequently, new treatments for complex disorders. In the area of circuit fault diagnosis engineering, there are various methods to identify the defective or vulnerable components of complex digital electronic circuits. In biological systems, however, knowledge is limited regarding the vulnerability of interconnected signaling pathways to the dysfunction of each specific molecule. By developing proper biologically driven digital vulnerability assessment methods, the vulnerability of complex signaling networks to the possible dysfunction of each molecule can be determined. To show the utility of this approach, we analyzed three well-characterized signaling networks--a cellular network that regulates the activity of caspase3, a network that regulates the activity of p53, and a central nervous system network that regulates the activity of the transcription factor CREB (adenosine 3',5'-monophosphate response element-binding protein). We found important differences among the vulnerability values of different molecules. Most of the identified highly vulnerable molecules are functionally related and known key regulators of these networks. Experimental data confirmed the ability of digital vulnerability assessment to correctly predict key regulators in the CREB network. Because this approach may provide insight into key molecules that contribute to human diseases, it may aid in the identification of critical targets for drug development.


Assuntos
Algoritmos , Modelos Biológicos , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Animais , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA