Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894120

RESUMO

Accurately capturing human movements is a crucial element of health status monitoring and a necessary precondition for realizing future virtual reality/augmented reality applications. Flexible motion sensors with exceptional sensitivity are capable of detecting physical activities by converting them into resistance fluctuations. Silver nanowires (AgNWs) have become a preferred choice for the development of various types of sensors due to their outstanding electrical conductivity, transparency, and flexibility within polymer composites. Herein, we present the design and fabrication of a flexible strain sensor based on silver nanowires. Suitable substrate materials were selected, and the sensor's sensitivity and fatigue properties were characterized and tested, with the sensor maintaining reliability after 5000 deformation cycles. Different sensors were prepared by controlling the concentration of silver nanowires to achieve the collection of motion signals from various parts of the human body. Additionally, we explored potential applications of these sensors in fields such as health monitoring and virtual reality. In summary, this work integrated the acquisition of different human motion signals, demonstrating great potential for future multifunctional wearable electronic devices.


Assuntos
Nanofios , Prata , Dispositivos Eletrônicos Vestíveis , Nanofios/química , Humanos , Prata/química , Movimento/fisiologia , Condutividade Elétrica , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
2.
J Mater Sci Mater Electron ; 34(12): 1033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38625192

RESUMO

Liquid-solid triboelectric nanogenerators (L-S TENGs) can generate corresponding electrical signal responses through the contact separation of droplets and dielectrics and have a wide range of applications in energy harvesting and self-powered sensing. However, the contact between the droplet and the electret will cause the contact L-S TENG's performance degradation or even failure. Here we report a noncontact triboelectric nanogenerator (NCLS-TENG) that can effectively sense droplet stimuli without contact with droplets and convert them into electrical energy or corresponding electrical signals. Since there is no contact between the droplet and the dielectric, it can continuously and stably generate a signal output. To verify the feasibility of NCLS-TENG, we demonstrate the modified murphy's dropper as a smart infusion monitoring system. The smart infusion monitoring system can effectively identify information such as the type, concentration, and frequency of droplets. NCLS-TENG show great potential in smart medical, smart wearable and other fields.

3.
Small ; 13(11)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067992

RESUMO

Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon-nanotube (MWCNT)- and reduced-graphene-oxide (rGO)-based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a "net"-like model for MWCNT films and a "scale"-like model for rGO films to explain these behaviors based on contributions from junction resistances (at interparticle junctions) and intrinsic resistances (of the particles). This phenomenology is accordingly validated via a series of experiments, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, a humidity-insensitive MWCNT/rGO hybrid conductive films is developed, which has the potential to greatly improve the stability of carbon-based electrical device to humidity. The authors further investigate the application of such films to human-finger electronics by fabricating transparent flexible devices consisting of a polyethylene terephthalate substrate equipped with an MWCNT/rGO pattern for gesture recognition, and MWCNT/rGO/MWCNT or rGO/MWCNT/rGO patterns for 3D noncontact sensing, which will be complementary to existing 3D touch technology.

4.
Langmuir ; 31(48): 13257-64, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26551217

RESUMO

Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate ( PEDOT: PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 µL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos/química
5.
Macromol Biosci ; : e2300528, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444237

RESUMO

Hydrogel wound dressing can accelerate angiogenesis to achieve rapid wound healing, but traditional hydrogel dressings are difficult to meet the repair of joint sites due to their low mechanical strength. Therefore, we constructed the gel system by designing the chemical-physical interpenetrating network structure to achieve high strength and high toughness of the hydrogel. The high-strength double-network hydrogels were synthesized by simple free radical polymerization and low-temperature physicochemical cross-linking in our experiments. The suspension was obtained by green reduction of graphene oxide with carboxymethyl chitosan, followed by the introduction of acrylamide (AM) to form a covalent cross-linked network, which was immersed in ferric chloride solution to form metal ligand bonds, and finally the chemical-physical dual cross-linked network hydrogel wound dressing was prepared. Here, reduced graphene oxide can enhance electrical conductivity and excellent near-infrared photothermal effect to the hydrogel. The cell viability of this novel wound dressing was above 90.0%, its hemolysis rate was below 2.0%, and the electrical conductivity could reach (6.89 ± 0.07 (mS/cm)). In addition, the stress-strain curve demonstrated that the double cross-linked network hydrogel could reach a stress of more than 0.8 MPa at 82.0% strain, and the cyclic compression experiment shows that it can still recover its original shape after five times of repeated compression. This work can provide a reference for the exploitation of high mechanical strength hydrogel wound dressings with good electrical conductivity and near-infrared photothermal effect. This article is protected by copyright. All rights reserved.

6.
Front Neurosci ; 17: 1178606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229430

RESUMO

Repetitive electrical nerve stimulation can induce a long-lasting perturbation of the axon's membrane potential, resulting in unstable stimulus-response relationships. Despite being observed in electrophysiology, the precise mechanism underlying electrical stimulation-dependent (ES-dependent) instability is still an open question. This study proposes a model to reveal a facet of this problem: how threshold fluctuation affects electrical nerve stimulations. This study proposes a new method based on a Circuit-Probability theory (C-P theory) to reveal the interlinkages between the subthreshold oscillation induced by neurons' resonance and ES-dependent instability of neural response. Supported by in-vivo studies, this new model predicts several key characteristics of ES-dependent instability and proposes a stimulation method to minimize the instability. This model provides a powerful tool to improve our understanding of the interaction between the external electric field and the complexity of the biophysical characteristics of axons.

7.
Sci Adv ; 8(43): eabo5314, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288316

RESUMO

Flexible tactile neuromorphic devices are becoming important as the impetus for the development of human-machine collaboration. However, accomplishing and further transcending human intelligence with artificial intelligence still confront many barriers. Here, we present a self-powered stretchable three-dimensional remote tactile device (3D-RTD) that performs the depth-of-field (DOF) sensation of external mechanical motions through a conductive-dielectric heterogeneous structure. The device can build a logic relationship precisely between DOF motions of an external active object and sensory potential signals of bipolar sign, frequency, amplitude, etc. The sensory mechanism is revealed on the basis of the electrostatic theory and multiphysics modeling, and the performance is verified via an artificial-biological hybrid system with micro/macroscale interaction. The feasibility of the 3D-RTD as an obstacle-avoidance patch for the blind is systematically demonstrated with a rat. This work paves the way for multimodal neuromorphic device that transcends the function of a biological one toward a new modality for brain-like intelligence.

8.
Adv Sci (Weinh) ; 4(4): 1600370, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28435776

RESUMO

Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

9.
ACS Appl Mater Interfaces ; 9(37): 32184-32191, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853543

RESUMO

Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

10.
Nanoscale ; 9(23): 7888-7894, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561828

RESUMO

The microstructure of a flexible film plays an important role in its sensing capability. Here, we fabricate a temperature-dependent wrinkled single-walled carbon nanotube (SWCNT)/polydimethyl-siloxane (PDMS) film (WSPF) and a wrinkle-dependent scale-like SWCNT/PDMS film (SSPF) successfully, and address the formation and evolution mechanisms of each film. The low elastic modulus and high coefficient of thermal expansion of the PDMS layer combined with the excellent piezoresistive behavior of the SWCNT film motivated us to investigate how the scale-like microstructure of the SSPF could be used to design multimodal-sensing devices with outstanding capabilities. The results show that SSPFs present supersensitive performance in mechanical loading (an effective sensitivity of up to 740.7 kPa-1) and in temperature (a tunable thermal index of up to 29.9 × 103 K). These exceptional properties were demonstrated in practical applications in a programmable flexile pressure sensor, thermal/light monitor or switch, etc., and were further explained through the macroscopic and microscopic piezoresistive behaviors of scale-like SWCNT coatings.

11.
ACS Nano ; 11(12): 12318-12325, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29149559

RESUMO

Cloud-seeding materials as a promising water-augmentation technology have drawn more attention recently. We designed and synthesized a type of core/shell NaCl/TiO2 (CSNT) particle with controlled particle size, which successfully adsorbed more water vapor (∼295 times at low relative humidity, 20% RH) than that of pure NaCl, deliquesced at a lower environmental RH of 62-66% than the hygroscopic point (hg.p., 75% RH) of NaCl, and formed larger water droplets ∼6-10 times its original measured size area, whereas the pure NaCl still remained as a crystal at the same conditions. The enhanced performance was attributed to the synergistic effect of the hydrophilic TiO2 shell and hygroscopic NaCl core microstructure, which attracted a large amount of water vapor and turned it into a liquid faster. Moreover, the critical particle size of the CSNT particles (0.4-10 µm) as cloud-seeding materials was predicted via the classical Kelvin equation based on their surface hydrophilicity. Finally, the benefits of CSNT particles for cloud-seeding applications were determined visually through in situ observation under an environmental scanning electron microscope on the microscale and cloud chamber experiments on the macroscale, respectively. These excellent and consistent performances positively confirmed that CSNT particles could be promising cloud-seeding materials.

12.
Sci Rep ; 6: 19632, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818091

RESUMO

Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate ( PEDOT: PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT: PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

13.
Adv Mater ; 28(23): 4665-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27061392

RESUMO

The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated.

14.
J Mater Chem B ; 3(27): 5436-5441, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262515

RESUMO

Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics to robotic skins to prosthetic limbs. Here, we report a new kind of flexible pressure sensing film based on ultrasensitive single wall carbon nanotube (SWCNT)/polydimethylsiloxane (PDMS) spheres. These spheres with the diameter of 600 ± 20 µm were prepared using the dipping method, and were further sandwiched by flexible electrodes using a stack of double-sided tape. The sensing mechanism of this device was analyzed by classic thin plate theory for circular plate deflection. Its sensitivity was further optimized by the synthesis of sensitive materials and geometrical design of device parameters. Ultimately, the developed sensing film exhibited a maximum sensitivity of 46.7% kPa-1 to resistance, great durability over 15 000 cycles, and very rapid mechanical responses (a few milliseconds). We also demonstrated that our sensing film can be used to detect the location and distribution of finger pressure, as well as to map the fingertip pulse signals, jugular venous pulse (JVP) signals and wrist pulse signals of the testers of different ages effectively.

15.
ACS Appl Mater Interfaces ; 7(31): 17104-11, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26133543

RESUMO

Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5±0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as a silver precursor, sodium borohydride (NaBH4) as a reducing agent, fatty acid (CnH2n+1COOH) as a dispersant agent, and ammonia (NH3·H2O) and hydrochloride (HCl) as a pH regulator and complexing agent in aqueous solution. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1COO-NH4+) and fatty acid (CnH2n+1COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous solution. This change determines the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12 and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8%. After sintering at 125 °C for 20 min, the as-prepared conductive silver nanoink (20 wt %) presents a satisfactory resistivity (as low as 6.6 µΩ·cm on the polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of a radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing excellent electrical performance.

16.
Nanoscale ; 7(35): 14766-73, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26288336

RESUMO

Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa(-1)) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4).


Assuntos
Alginatos , Hidrogel de Polietilenoglicol-Dimetacrilato , Membranas Artificiais , Monitorização Fisiológica/instrumentação , Nanotubos de Carbono , Polietilenotereftalatos , Compostos de Estanho , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Monitorização Fisiológica/métodos
17.
Nanoscale Res Lett ; 8(1): 296, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799897

RESUMO

An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 µΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.

18.
Nanoscale Res Lett ; 8(1): 147, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23537333

RESUMO

An unusual strategy was designed to fabricate conductive patterns with high reproducibility for flexible electronics by drop or fit-to-flow method. Silver nanowire (SNW) ink with surface tension of 36.9 mN/m and viscosity of 13.8 mPa s at 20°C was prepared and characterized using a field emission transmission electron microscope, X-ray diffractometer, thermogravimetric analyzer, scanning electron microscope, and four-point probe. Polydimethylsiloxane (PDMS) pattern as template was fabricated by spin coating (500 rpm), baking at 80°C for 3 h, and laser cutting. The prepared SNW ink can flow along the trench of the PDMS pattern spontaneously, especially after plasma treatment with oxygen, and show a low resistivity of 12.9 µΩ cm after sintering at 125°C for 30 min. In addition, an antenna pattern was also prepared to prove the feasibility of the approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA