Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(2): e2300529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066405

RESUMO

Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 ß-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of ß-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of ß-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.


Assuntos
Celulase , Corantes de Rosanilina , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Poligalacturonase , Saccharum/metabolismo , Lacase , Trametes/metabolismo , Fermentação , beta-Glucosidase/metabolismo
2.
Arch Microbiol ; 204(1): 97, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964907

RESUMO

Tuberculosis (TB) causes millions of deaths each year across the globe. Multiple drug-resistant (MDR) and extensively drug-resistant (XDR) mycobacterial strains have made the treatment extremely difficult. To overcome this hurdle, the development of new drug targets and an effective treatment strategy are desperately needed. This can be achieved by deciphering the role of essential genes and enzymes which are involved in cell survival. One such enzyme is glyoxalase II. The glyoxalase system (glyoxalase I and glyoxalase II) has a pivotal role in cellular survival and detoxification by converting methylglyoxal (MG) into lactate. Otherwise, the increased concentration of MG then modifies DNA, proteins, and lipids, resulting in abnormalities and cell death. Interestingly, the function and physiological role of glyoxalase II have remained undetermined in mycobacteria. In this study, the functional activity of MSMEG_2975 (putative glyoxalase II) after heterologous cloning and expression was determined. And the knockdown strain Mycobacterium smegmatis KD for MSMEG_2975 was constructed with tetracycline-inducible vector pMIND. The inducible knockdown of MSMEG_2975 affected bacterial growth, biofilm formation, transcriptome, and enhanced the susceptibility to antibiotics. This work represents mycobacterial glyoxalase II as a potential drug target against mycobacterial pathogens and indicates the crucial regulatory role of glyoxalase II in mycobacteria.


Assuntos
Mycobacterium smegmatis , Transcriptoma , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes , Mycobacterium smegmatis/genética , Tioléster Hidrolases
3.
Adv Exp Med Biol ; 1155: 875-887, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468454

RESUMO

Diabetes mellitus (DM) is a condition characterized by chronic hyperglycemia, which leads to diabetic neuropathy and apoptosis in the spinal cord. Taurine has been found to ameliorate the diabetic neuropathy and control apoptosis in various tissues. However, there are few reports that discuss the direct relationship between spinal cord and anti-apoptotic effect of taurine. In this study, DM was induced in male SD rats with STZ @ 25 mg/Kg of body weight in combination with high fat diet. After 2 weeks, they were divided into four groups as DM: diabetic rats, T1 (0.5%), T2 (1%) and T3 (2%) taurine solution, while control group was non-diabetic rats (no treatment). The results showed that DM increased apoptosis, decreased phosphorylated Akt and Bad. DM decreased expression of Bcl-2 and increased the Bax. Moreover, the release of cytochrome c into cytosol was increased in DM and activation of caspase-3 was also increased. However, taurine reversed all these abnormal changes in a dose dependent manner. Our results suggested the involvement of Akt/Bad signaling pathway and mitochondrial apoptosis pathway in protective effect of taurine against apoptosis in the spinal cord of diabetic rats. Therefore, taurine may be a potential medicine against diabetic neuropathy by controlling apoptosis.


Assuntos
Apoptose , Neuropatias Diabéticas , Medula Espinal/efeitos dos fármacos , Taurina/farmacologia , Animais , Diabetes Mellitus Experimental , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/citologia
4.
Biology (Basel) ; 13(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785795

RESUMO

Mycobacterium tuberculosis (Mtb) ranks as the most lethal human pathogen, able to fend off repeated attacks by the immune system or medications. PE_PGRS proteins are hallmarks of the pathogenicity of Mtb and contribute to its antigenic diversity, virulence, and persistence during infection. M. smegmatis is a nonpathogenic mycobacterium that naturally lacks PE_PGRS and is used as a model to express Mtb proteins. PE_PGRS has the capability to evade host immune responses and enhance the intracellular survival of M. smegmatis. Despite the intense investigations into PE_PGRS proteins, their role in tuberculosis remains elusive. We engineered the recombinant M. smegmatis strain Ms-PE_PGRS38. The result shows that PE_PGRS38 is expressed in the cell wall of M. smegmatis. PE_PGRS38 contributes to biofilm formation, confers permeability to the cell wall, and shows variable responses to exogenous stresses. PE_PGRS38 downregulated TLR4/NF-κB signaling in RAW264.7 macrophages and lung tissues of infected mice. In addition, PE_PGRS38 decreased NLRP3-dependent IL-1ß release and limited pathogen-mediated inflammasome activity during infection. Moreover, PE_PGRS38 inhibited the apoptosis of RAW264.7 cells by downregulating the expression of apoptotic markers including Bax, cytochrome c, caspase-3, and caspase-9. In a nutshell, our findings demonstrate that PE_PGRS38 is a virulence factor for Mtb that enables recombinant M. smegmatis to survive by resisting and evading the host's immune responses during infection.

5.
Res Microbiol ; 173(1-2): 103884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34644596

RESUMO

Mycobacterium tuberculosis cell wall consist variety of mannose containing glycoconjugates including lipomannan (LM) and lipoarabinomannan (LAM). These lipoglycans are involved in cell wall integrity and play role in virulence of M. tuberculosis by modulating host immune response. GDP-mannose, required for the synthesis of lipoglycans, is catalyzed by enzyme Mannose-1-phosphate guanylyl transferase (ManB). The enzyme with similar function has been studied in variety of species of prokaryotes and eukaryotes. However, biological role of ManB and its enzymatic activity remains uncharacterized in M. tuberculosis. In present study, we elucidated the role of enzyme by constructing manB knockdown strain of M. tuberculosis H37Ra. The manB knockdown decreased the cell growth and also effected the morphology of M. tuberculosis by altering the permeability of cell membrane. These findings provide the understanding on ManB function and suggesting that ManB could be the potential target for novel anti-tuberculosis drug. Furthermore, we also characterized ManB enzyme by establishing 96 well plate colorimetric assay and determined the kinetic properties including initial velocity, optimum temperature, optimum pH and other kinetic parameters. Our established assay will be helpful for further high throughput screening of potential inhibitors against ManB.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis , Nucleotidiltransferases/metabolismo , Parede Celular/metabolismo , Lipopolissacarídeos/metabolismo , Manose/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Fosfatos/metabolismo , Transferases/análise , Transferases/metabolismo
6.
Front Microbiol ; 12: 657726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276591

RESUMO

Protein O-mannosyltransferase (PMT) catalyzes an initial step of protein O-mannosylation of Mycobacterium tuberculosis (Mtb) and plays a crucial role for Mtb survival in the host. To better understand the role of PMT in the host innate immune response during mycobacterial infection, in this study, we utilized Mycobacterium smegmatis pmt (MSMEG_5447) gene knockout strain, ΔM5447, to infect THP-1 cells. Our results revealed that the lack of MSMEG_5447 not only impaired the growth of M. smegmatis in 7H9 medium but also reduced the resistance of M. smegmatis against lysozyme and acidic stress in vitro. Macrophage infection assay showed that ΔM5447 displayed attenuated growth in macrophages at 24 h post-infection. The production of TNF-α and IL-6 and the activation of transcription factor NF-κB were decreased in ΔM5447-infected macrophages, which were further confirmed by transcriptomic analysis. Moreover, ΔM5447 failed to inhibit phagosome-lysosome fusion in macrophages. These findings revealed that PMT played a role in modulating the innate immune responses of the host, which broaden our understanding for functions of protein O-mannosylation in mycobacterium-host interaction.

7.
Front Microbiol ; 10: 1799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481936

RESUMO

Mycobacterium tuberculosis is one of most pathogenic microorganisms in the world. Previously, the bifunctional enzyme GlmU with glucosamine-1-phosphate acetyltransferase activity and N-acetylglucosamine-1-phosphate uridyltransferase activity has been suggested as a potential drug target; therefore, discovering compounds targeting GlmU acetyltransferase is necessary. The natural products were tested for inhibition of GlmU acetyltransferase activity. We found that dicumarol exhibited inhibitory effects on GlmU acetyltransferase, with a concentration achieving a 50% inhibition (IC50) value of 4.608 µg/ml (13.7 µM). The inhibition kinetics indicated that dicumarol uncompetitively inhibited acetyl CoA and showed mixed-type inhibition for glucosamine-1-phosphate (GlcN-1-P). The activity of dicumarol against M. tuberculosis H37Ra was evaluated with a minimum inhibitory concentration (MIC) value of 6.25 µg/ml (18.55 µM) in the Alamar blue assay. Dicumarol also exhibited inhibitory effects on several clinically sensitive M. tuberculosis strains and drug-resistant strains, with a range of MIC value of 6.25 to >100 µg/ml. Dicumarol increased the sensitivity of anti-tuberculosis drugs (isoniazid and rifampicin) when dicumarol was present at a low concentration. The transcriptome and proteome data of M. tuberculosis H37Ra treated by dicumarol showed that the affected genes were associated with cell wall synthesis, DNA damage and repair, metabolic processes, and signal transduction. These results provided the mechanism of dicumarol inhibition against GlmU acetyltransferase and M. tuberculosis and also suggested that dicumarol is a potential candidate for TB treatment.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31380295

RESUMO

Mycobacterium tuberculosis bifunctional enzyme GlmU is a novel target for anti-TB drugs and is involved in glycosyl donor UDP-N-acetylglucosamine biosynthesis. Here, we found that TPSA (2-[5-(2-{[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}acetyl)-2-thienyl]acetic acid) was a novel inhibitor for GlmU acetyltransferase activity (IC50: 5.3 µM). The interaction sites of GlmU and TPSA by molecular docking were confirmed by site-directed mutagenesis. TPSA showed an inhibitory effect on Mtb H37Ra growth and intracellular H37Ra in macrophage cells (MIC: 66.5 µM). To investigate why TPSA at a higher concentration (66.5 µM) was able to inhibit H37Ra growth, proteome and transcriptome of H37Ra treated with TPSA were analyzed. The expression of two methyltransferases MRA_0565 (Rv0558) and MRA_0567 (Rv0560c) were markedly increased. TPSA was pre-incubated with purified Rv0558 and Rv0560c in the presence of S-adenosylmethionine (methyl donor) respectively, resulting in its decreased inhibitory effect of GlmU on acetyltransferase activity. The inhibition of TPSA on growth of H37Ra with overexpressed Rv0558 and Rv0560c was reduced. These implied that methyltransferases could modify TPSA. The methylation of TPSA catalyzed by Rv0560c was subsequently confirmed by LC-MS. Therefore, TPSA as a GlmU acetyltransferase activity inhibitor may offer a structural basis for new anti-tuberculosis drugs. TPSA needs to be modified further by some groups to prevent its methylation by methyltransferases.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Expressão Gênica , Cinética , Metilação/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteoma , Pirimidinas/química , Células RAW 264.7 , S-Adenosilmetionina/metabolismo , Tiofenos/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA