RESUMO
Protein-ligand docking plays a significant role in structure-based drug discovery. This methodology aims to estimate the binding mode and binding free energy between the drug-targeted protein and candidate chemical compounds, utilizing protein tertiary structure information. Reformulation of this docking as a quadratic unconstrained binary optimization (QUBO) problem to obtain solutions via quantum annealing has been attempted. However, previous studies did not consider the internal degrees of freedom of the compound that is mandatory and essential. In this study, we formulated fragment-based protein-ligand flexible docking, considering the internal degrees of freedom of the compound by focusing on fragments (rigid chemical substructures of compounds) as a QUBO problem. We introduced four factors essential for fragment-based docking in the Hamiltonian: (1) interaction energy between the target protein and each fragment, (2) clashes between fragments, (3) covalent bonds between fragments, and (4) the constraint that each fragment of the compound is selected for a single placement. We also implemented a proof-of-concept system and conducted redocking for the protein-compound complex structure of Aldose reductase (a drug target protein) using SQBM+, which is a simulated quantum annealer. The predicted binding pose reconstructed from the best solution was near-native (RMSD = 1.26 Å), which can be further improved (RMSD = 0.27 Å) using conventional energy minimization. The results indicate the validity of our QUBO problem formulation.
RESUMO
In the polyomino puzzle, the aim is to fill a finite space using several polyomino pieces with no overlaps or blanks. Because it is an NP-complete combinatorial optimization problem, various probabilistic and approximated approaches have been applied to find solutions. Several previous studies embedded the polyomino puzzle in a QUBO problem, where the original objective function and constraints are transformed into the Hamiltonian function of the simulated Ising model. A solution to the puzzle is obtained by searching for a ground state of Hamiltonian by simulating the dynamics of the multiple-spin system. However, previous methods could solve only tiny polyomino puzzles considering a few combinations because their Hamiltonian designs were not efficient. We propose an improved Hamiltonian design that introduces new constraints and guiding terms to weakly encourage favorable spins and pairs in the early stages of computation. The proposed model solves the pentomino puzzle represented by approximately 2000 spins with >90% probability. Additionally, we extended the method to a generalized problem where each polyomino piece could be used zero or more times and solved it with approximately 100% probability. The proposed method also appeared to be effective for the 3D polycube puzzle, which is similar to applications in fragment-based drug discovery.
RESUMO
Metagenomic analysis, a technique used to comprehensively analyze microorganisms present in the environment, requires performing high-precision homology searches on large amounts of sequencing data, the size of which has increased dramatically with the development of next-generation sequencing. NCBI BLAST is the most widely used software for performing homology searches, but its speed is insufficient for the throughput of current DNA sequencers. In this paper, we propose a new, high-performance homology search algorithm that employs a two-step seed search strategy using multiple reduced amino acid alphabets to identify highly similar subsequences. Additionally, we evaluated the validity of the proposed method against several existing tools. Our method was faster than any other existing program for ≤120,000 queries, while DIAMOND, an existing tool, was the fastest method for >120,000 queries.