Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Insect Physiol ; 145: 104474, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596320

RESUMO

Foreleg trajectory in the mantis strike varies depending on prey distance. To examine how muscle activities affect foreleg trajectory, we recorded strike behaviours of the Chinese mantis with a high-speed camera and electromyograms of the foreleg trochanteral extensor and flexor. At the approach phase of the mantis strike, the prothorax-coxa (P-C) joint elevated and the femur-tibia (F-T) joint extended. At the sweep phase, the coxa-trochanter (C-T) joint rapidly extended, then, the F-T joint rapidly flexed to capture the prey. At capture initiation, the C-T joint extended more with greater prey distance. After cutting the tendon of the trochanteral flexor, the C-T joint extended similarly to that of the intact foreleg but did not flex after it reached its peak angle. After cutting the tendon of the trochanteral extensor, the C-T joint did not extend as much as that of the intact foreleg. During rapid extension of the C-T joint, a burst of spikes from the coxal trochanteral extensor was observed in electromyograms. Among several parameters, burst duration was the best predictor of C-T joint angular change during strike. Unexpectedly, trochanteral flexor activity was also observed during rapid extension of the C-T joint. These results indicated that the coxal trochanteral extensor mainly contributed to the rapid C-T extension during strike, but other muscles also contributed at the beginning of extension. The trochanteral flexor appeared to contribute to C-T flexion by countering the rapid extension.


Assuntos
Movimento , Músculos , Animais , Movimento/fisiologia , Eletromiografia , Tendões
2.
J Comp Neurol ; 528(9): 1599-1615, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846077

RESUMO

The praying mantis is a good model for the study of motor control, especially for investigating the transformation from sensory signals into motor commands. In insects, thoracic ganglia (TG) play an important role in motor control. To understand the functional organization of TG, an atlas is useful. However, except for the fruitfly, no three-dimensional atlas of TG has not been reported for insects. In this study, we generated a three-dimensional atlas of prothoracic, mesothoracic, and metathoracic ganglia in the praying mantis (Tenodera aridifolia). First, we observed serial sections of the prothoracic ganglion stained with hematoxylin and eosin to identify longitudinal tracts and transverse commissures. We then visualized neuropil areas by immunostaining whole-mount TG with an anti-synapsin antibody. Before labeling each neuropil area, standardization using the iterative shape averaging method was applied to images to make neuropil contours distinct. Neuropil areas in TG were defined based on their shape and relative position to tracts and commissures. Finally, a three-dimensional atlas was reconstructed from standardized images of the TG. The standard TG are available at the Comparative Neuroscience Platform website (cns.neuroinf.jp/modules/xoonips/detail.php?item_id=11946) and can be used as a common reference map to combine the anatomical data obtained from different individuals.


Assuntos
Atlas como Assunto , Gânglios dos Invertebrados/anatomia & histologia , Mantódeos/anatomia & histologia , Anatomia Artística , Animais , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA