Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239894

RESUMO

Foxp3+ regulatory T (Treg) cells prevent excessive immune responses against dietary antigens and commensal bacteria in the intestine. Moreover, Treg cells contribute to the establishment of a symbiotic relationship between the host and gut microbes, partly through immunoglobulin A. However, the mechanism by which Treg cell dysfunction disturbs the balanced intestinal microbiota remains unclear. In this study, we used Foxp3 conditional knockout mice to conditionally ablate the Foxp3 gene in adult mice and examine the relationship between Treg cells and intestinal bacterial communities. Deletion of Foxp3 reduced the relative abundance of Clostridia, suggesting that Treg cells have a role in maintaining Treg-inducing microbes. Additionally, the knockout increased the levels of fecal immunoglobulins and immunoglobulin-coated bacteria. This increase was due to immunoglobulin leakage into the gut lumen as a result of loss of mucosal integrity, which is dependent on the gut microbiota. Our findings suggest that Treg cell dysfunction leads to gut dysbiosis via aberrant antibody binding to the intestinal microbes.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Camundongos , Animais , Disbiose/metabolismo , Intestinos/microbiologia , Bactérias/metabolismo , Camundongos Knockout , Imunoglobulina A/metabolismo , Fatores de Transcrição Forkhead/genética
2.
Front Robot AI ; 9: 797566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450166

RESUMO

Multi-legged animals such as myriapods can locomote on unstructured rough terrain using their flexible bodies and legs. This highly adaptive locomotion emerges through the dynamic interactions between an animal's nervous system, its flexible body, and the environment. Previous studies have primarily focused on either adaptive leg control or the passive compliance of the body parts and have shown how each enhanced adaptability to complex terrains in multi-legged locomotion. However, the essential mechanism considering both the adaptive locomotor circuits and bodily flexibility remains unclear. In this study, we focused on centipedes and aimed to understand the well-balanced coupling between the two abovementioned mechanisms for rough terrain walking by building a neuromechanical model based on behavioral findings. In the behavioral experiment, we observed a centipede walking when part of the terrain was temporarily removed and thereafter restored. We found that the ground contact sense of each leg was essential for generating rhythmic leg motions and also for establishing adaptive footfall patterns between adjacent legs. Based on this finding, we proposed decentralized control mechanisms using ground contact sense and implemented them into a physical centipede model with flexible bodies and legs. In the simulations, our model self-organized the typical gait on flat terrain and adaptive walking during gap crossing, which were similar to centipedes. Furthermore, we demonstrated that the locomotor performance deteriorated on rough terrain when adaptive leg control was removed or when the body was rigid, which indicates that both the adaptive leg control and the flexible body are essential for adaptive locomotion. Thus, our model is expected to capture the possible essential mechanisms underlying adaptive centipede walking and pave the way for designing multi-legged robots with high adaptability to irregular terrain.

3.
Front Immunol ; 12: 779709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880872

RESUMO

The ocular mucosal tissues are exposed to potentially harmful foreign antigens in the air and tear fluid. The tear duct-associated lymphoid tissue (TALT) may contribute to immune surveillance in the eye region. Follicle-associated epithelium (FAE) of TALTs is classified as stratified squamous epithelium and consists of squamous epithelial cells arranged in layers on the basement membrane. In contrast, most mucosa-associated lymphoid tissue is covered by a monolayer of epithelium containing microfold (M) cells. Therefore, antigen uptake and the presence of M cells in TALT are not fully understood. The present study found that a small population of FAE cells in the TALT expressed intestinal M-cell markers, namely Sox8, Tnfaip2, GP2, and OPG. This cell population was identified as functional M cells because of their uptake capacity of luminal nanoparticles. In addition, RANKL, which is essential for M-cell differentiation, was expressed by stroma-like cells at the subepithelial region and its receptor RANK by the FAE in the TALT. The administration of RANKL markedly increased the number of Sox8+ M cells. In contrast, deficiency in OPG, an endogenous inhibitor of RANKL, increased the number of M cells in the TALT. These data demonstrate that the RANKL-RANK axis is essential for M-cell differentiation in the TALT. Furthermore, immunization via eye drops elicited the production of antigen-specific antibodies in tears, which was enhanced by RANKL administration. Thus, TALT M cells play an important role in the immunosurveillance of the eye region.


Assuntos
Células Epiteliais/imunologia , Vigilância Imunológica/imunologia , Tecido Linfoide/imunologia , Ducto Nasolacrimal/imunologia , Animais , Camundongos
4.
Front Immunol ; 10: 2345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649668

RESUMO

Microfold (M) cells are located in the epithelium covering mucosa-associated lymphoid tissues, such as the Peyer's patches (PPs) of the small intestine. M cells actively transport luminal antigens to the underlying lymphoid follicles to initiate an immune response. The molecular machinery of M-cell differentiation and function has been vigorously investigated over the last decade. Studies have shed light on the role of M cells in the mucosal immune system and have revealed that antigen uptake by M cells contributes to not only mucosal but also systemic immune responses. However, M-cell studies usually focus on infectious diseases; the contribution of M cells to autoimmune diseases has remained largely unexplored. Accumulating evidence suggests that dysbiosis of the intestinal microbiota is implicated in multiple systemic diseases, including autoimmune diseases. This implies that the uptake of microorganisms by M cells in PPs may play a role in the pathogenesis of autoimmune diseases. We provide an outline of the current understanding of M-cell biology and subsequently discuss the potential contribution of M cells and PPs to the induction of systemic autoimmunity, beyond the mucosal immune response.


Assuntos
Doenças Autoimunes , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Nódulos Linfáticos Agregados , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Doenças Autoimunes/patologia , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Humanos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA