Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36534001

RESUMO

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

2.
J Am Chem Soc ; 143(46): 19389-19398, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756036

RESUMO

W(CNAr)6 (CNAr = arylisocyanide) photoreductants catalyze base-promoted homolytic aromatic substitution (BHAS) of 1-(2-iodobenzyl)-pyrrole in deuterated benzene. Moderate to high efficiencies correlate with W(CNAr)6 excited-state reduction potentials upon one-photon 445 nm excitation, with 10 mol % loading of the most powerful photoreductants W(CNDipp)6 (CNDipp = 2,6-diisopropylphenylisocyanide) and W(CNDippPhOMe3)6 (CNDippPhOMe3 = 4-(3,4,5-trimethoxyphenyl)-2,6-diisopropylphenylisocyanide) affording nearly complete conversion. Stern-Volmer quenching experiments indicated that catalysis is triggered by substrate reductive dehalogenation. Taking advantage of the large two-photon absorption (TPA) cross sections of W(CNAr)6 complexes, we found that photocatalysis can be driven with femtosecond-pulsed 810 nm excitation. For both one- and two-photon excitation, photocatalysis was terminated by the formation of seven-coordinate WII-diiodo [WI2(CNAr)5] complexes. Notably, we discovered that W(CNDipp)6 can be regenerated by chemical reduction of WI2(CNDipp)5 with excess ligand present in solution.

3.
Inorg Chem ; 60(6): 3481-3491, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280385

RESUMO

Homoleptic tungsten(0) arylisocyanides possess photophysical and photochemical properties that rival those of archetypal ruthenium(II) and iridium(III) polypyridine complexes. Previous studies established that extending the π-system of 2,6-diisopropylphenylisocyanide (CNDipp) by coupling aryl substituents para to the isocyanide functionality results in W(CNDippAr)6 oligoarylisocyanide complexes with greatly enhanced metal-to-ligand charge transfer (MLCT) excited-state properties relative to those of W(CNDipp)6. Extending electronic modifications to delineate additional design principles for this class of photosensitizers, herein we report a series of W(CNAr)6 compounds with naphthalene-based fused-ring (CN-1-(2-iPr)-Naph) and CNDipp-based alkynyl-bridged (CNDippCCAr) arylisocyanide ligands. Systematic variation of the secondary aromatic system in the CNDippCCAr platform provides a straightforward method to modulate the photophysical properties of W(CNDippCCAr)6 complexes, allowing access to an extended range of absorption/luminescence profiles and highly reducing excited states, while maintaining the high molar absorptivity MLCT absorption bands, high photoluminescence quantum yields, and long excited-state lifetimes of previous W(CNAr)6 complexes. Notably, W(CN-1-(2-iPr)-Naph)6 exhibits the longest excited-state lifetime of all W(CNAr)6 complexes explored thus far, highlighting the potential benefits of utilizing fused-ring arylisocyanide ligands in the construction of tungsten(0) photoreductants.

4.
Proc Natl Acad Sci U S A ; 113(23): 6409-14, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27222576

RESUMO

Efficient generation of hydrogen from renewable resources requires development of catalysts that avoid deep wells and high barriers. Information about the energy landscape for H2 production can be obtained by chemical characterization of catalytic intermediates, but few have been observed to date. We have isolated and characterized a key intermediate in 2e(-) + 2H(+) → H2 catalysis. This intermediate, obtained by treatment of Cp*Rh(bpy) (Cp*, η(5)-pentamethylcyclopentadienyl; bpy, κ(2)-2,2'-bipyridyl) with acid, is not a hydride species but rather, bears [η(4)-Cp*H] as a ligand. Delivery of a second proton to this species leads to evolution of H2 and reformation of η(5)-Cp* bound to rhodium(III). With suitable choices of acids and bases, the Cp*Rh(bpy) complex catalyzes facile and reversible interconversion of H(+) and H2.

5.
Chemistry ; 23(45): 10744-10748, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28658508

RESUMO

A series of tetranuclear [LM3 (HFArPz)3 OM'][OTf]2 (M, M'=Fe or Mn) clusters that displays 3-(2-fluorophenyl)pyrazolate (HFArPz) as bridging ligand is reported. With these complexes, manganese was demonstrated to facilitate C(sp2 )-F bond oxygenation via a putative terminal metal-oxo species. Moreover, the presence of both ortho C(sp2 )-H and C(sp2 )-F bonds in proximity of the apical metal center provided an opportunity to investigate the selectivity of intramolecular C(sp2 )-X bond oxygenation (X=H or F) in these isostructural compounds. With iron as the apical metal center, (M'=Fe) C(sp2 )-F bond oxygenation occur almost exclusively, whereas with manganese (M'=Mn), the opposite reactivity is preferred.

6.
Angew Chem Int Ed Engl ; 56(17): 4772-4776, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28338266

RESUMO

We report the synthesis, characterization, and reactivity of [LFe3 (PhPz)3 OMn(s PhIO)][OTf]x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (FeIII2 FeII MnII vs. FeIII3 MnII ) influence oxygen atom transfer in tetranuclear Fe3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.


Assuntos
Iodobenzenos/química , Compostos de Ferro/química , Manganês/química , Oxigênio/química , Cristalografia por Raios X , Elétrons , Modelos Moleculares , Oxirredução
7.
J Am Chem Soc ; 138(18): 5765-8, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27092968

RESUMO

We report here the efficient reduction of CO2 to CO by cobalt aminopyridine macrocycles. The effect of the pendant amines on catalysis was investigated. Several cobalt complexes based on the azacalix[4](2,6)pyridine framework with different substitutions on the pendant amine groups have been synthesized (R = H (1), Me (2), and allyl (3)), and their electrocatalytic properties were explored. Under an atmosphere of CO2 and in the presence of weak Brønsted acids, large catalytic currents are observed for 1, corresponding to the reduction of CO2 to CO with excellent Faradaic efficiency (98 ± 2%). In comparison, complexes 2 and 3 generate CO with TONs at least 300 times lower than 1, suggesting that the presence of the pendant NH moiety of the secondary amine is crucial for catalysis. Moreover, the presence of NH groups leads to a positive shift in the reduction potential of the Co(I/0) couple, therefore decreasing the overpotential for CO2 reduction.

8.
J Am Chem Soc ; 138(3): 969-74, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26713861

RESUMO

Derivatives of the fully twisted bicyclic amide 7-hypoquinuclidone are synthesized using a Schmidt-Aubé reaction. Their structures were unambiguously confirmed by X-ray diffraction analysis and extensive spectroscopic characterization. Furthermore, the stability and chemical reactivity of these anti-Bredt amides are investigated. 7-Hypoquinuclidonium tetrafluoroborate is shown to decompose to a unique nitrogen bound amide-BF3 complex of 7-hypoquinuclidone under anhydrous conditions and to react instantaneously with water making it one of the most reactive amides known to date.


Assuntos
Boranos/síntese química , Quinuclidinas/síntese química , Boranos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Quinuclidinas/química
9.
J Am Chem Soc ; 138(5): 1486-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26760217

RESUMO

Herein we report the intramolecular arene C-H and C-F bond oxygenation by tetranuclear iron complexes. Treatment of [LFe3(PhPz)3OFe][OTf]2 (1) or its fluorinated analog [LFe3(F2ArPz)3OFe][OTf]2 (5) with iodosobenzene results in the regioselective hydroxylation of a bridging pyrazolate ligand, converting a C-H or C-F bond into a C-O bond. The observed reactivity suggests the formation of terminal and reactive Fe-oxo intermediates. With the possibility of intramolecular electron transfer within clusters in 1 and 5, different reaction pathways (Fe(IV)-oxo vs Fe(III)-oxo) might be responsible for the observed arene hydroxylation.


Assuntos
Carbono/química , Flúor/química , Hidrogênio/química , Ferro/química , Substâncias Macromoleculares/química , Ligantes , Modelos Moleculares
10.
J Am Chem Soc ; 137(33): 10500-3, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26251373

RESUMO

Addition of trimethylphosphine to a bis(phenolate)benzylimidazolylidene(dibenzyl)zirconium complex induces migration of a benzyl ligand from the metal center to the C(carbine) atom. This process may be reversed, resulting in Csp(3)-Csp(3) activation, by abstraction of the phosphine, an example of regulated, reversible alkyl migration. Addition of ammonia to the dibenzyl complex results in migration of one benzyl group and protonolysis of the other to generate a bis(NH2)-bridged dimer via an NMR-observable intermediate NH3 adduct.

11.
J Am Chem Soc ; 137(25): 8251-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26042557

RESUMO

A series of five [Rh(P2N2)2](+) complexes (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane) have been synthesized and characterized: [Rh(P(Ph)2N(Ph)2)2](+) (1), [Rh(P(Ph)2N(Bn)2)2](+) (2), [Rh(P(Ph)2N(PhOMe)2)2](+) (3), [Rh(P(Cy)2N(Ph)2)2](+) (4), and [Rh(P(Cy)2N(PhOMe)2)2](+) (5). Complexes 1-5 have been structurally characterized as square planar rhodium bis-diphosphine complexes with slight tetrahedral distortions. The corresponding hydride complexes 6-10 have also been synthesized and characterized, and X-ray diffraction studies of HRh(P(Ph)2N(Bn)2)2 (7), HRh(P(Ph)2N(PhOMe)2)2 (8) and HRh(P(Cy)2N(Ph)2)2 (9) show that the hydrides have distorted trigonal bipyramidal geometries. Equilibration of complexes 2-5 with H2 in the presence of 2,8,9-triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[3,3,3]undecane (Verkade's base) enabled the determination of the hydricities and estimated pKa's of the Rh(I) hydride complexes using the appropriate thermodynamic cycles. Complexes 1-5 were active for CO2 hydrogenation under mild conditions, and their relative rates were compared to that of [Rh(depe)2](+), a nonpendant-amine-containing complex with a similar hydricity to the [Rh(P2N2)2](+) complexes. It was determined that the added steric bulk of the amine groups on the P2N2 ligands hinders catalysis and that [Rh(depe)2](+) was the most active catalyst for hydrogenation of CO2 to formate.

12.
J Am Chem Soc ; 137(17): 5782-92, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25897653

RESUMO

A series of second-generation ruthenium olefin metathesis catalysts was investigated using a combination of reaction kinetics, X-ray crystallography, NMR spectroscopy, and DFT calculations in order to determine the relationship between the structure of the chelating o-alkoxybenzylidene and the observed initiation rate. Included in this series were previously reported catalysts containing a variety of benzylidene modifications as well as four new catalysts containing cyclopropoxy, neopentyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. The initiation rates of this series of catalysts were determined using a UV/vis assay. All four new catalysts were observed to be faster-initiating than the corresponding isopropoxy control, and the 2-adamantyloxy catalyst was found to be among the fastest-initiating Hoveyda-type catalysts reported to date. Analysis of the X-ray crystal structures and computed energy-minimized structures of these catalysts revealed no correlation between the Ru-O bond length and Ru-O bond strength. On the other hand, the initiation rate was found to correlate strongly with the computed Ru-O bond strength. This latter finding enables both the rationalization and prediction of catalyst initiation through the calculation of a single thermodynamic parameter in which no assumptions about the mechanism of the initiation step are made.


Assuntos
Alcenos/química , Compostos de Benzilideno/química , Quelantes/química , Compostos Organometálicos/química , Rutênio/química , Catálise , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica , Termodinâmica
13.
Inorg Chem ; 54(1): 59-64, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25521310

RESUMO

We report the syntheses and electrochemical properties of nine new clusters ([LLnMn(IV)3O4(OAc)3(DMF)n](+) (Ln = La(3+), Ce(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Yb(3+), and Lu(3+), n = 2 or 3)) supported by a ligand (L(3-)) based on a 1,3,5-triarylbenzene motif appended with alkoxide and pyridine donors. All complexes were obtained by metal substitution of Ca(2+) with lanthanides upon treatment of previously reported LMn3CaO4(OAc)3(THF) with Ln(OTf)3. Structural characterization confirmed that the clusters contain the [LnMn3O4] cubane motif. The effect of the redox-inactive centers on the electronic properties of the Mn3O4 cores was investigated by cyclic voltammetry. A linear correlation between the redox potential of the cluster and the ionic radii or pKa of the lanthanide metal ion was observed. Chemical reduction of the LMn(IV)3GdO4(OAc)3(DMF)2 cluster with decamethylferrocene, resulted in the formation of LGdMn(IV)2Mn(III)O4(OAc)3(DMF)2, a rare example of mixed-valence [MMn3O4] cubane. The lanthanide-coordinated ligands can be substituted with other donors, including water, the biological substrate.


Assuntos
Derivados de Benzeno/química , Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Cálcio/química , Técnicas Eletroquímicas , Evolução Molecular , Compostos Ferrosos/química , Manganês/química , Compostos Organometálicos/síntese química , Oxirredução , Piridinas/química , Água/química
14.
J Am Chem Soc ; 136(41): 14373-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25241826

RESUMO

Synthetic model compounds have been targeted to benchmark and better understand the electronic structure, geometry, spectroscopy, and reactivity of the oxygen-evolving complex (OEC) of photosystem II, a low-symmetry Mn4CaOn cluster. Herein, low-symmetry Mn(IV)3GdO4 and Mn(IV)3CaO4 cubanes are synthesized in a rational, stepwise fashion through desymmetrization by ligand substitution, causing significant cubane distortions. As a result of increased electron richness and desymmetrization, a specific µ3-oxo moiety of the Mn3CaO4 unit becomes more basic allowing for selective protonation. Coordination of a fifth metal ion, Ag(+), to the same site gives a Mn3CaAgO4 cluster that models the topology of the OEC by displaying both a cubane motif and a "dangler" transition metal. The present synthetic strategy provides a rational roadmap for accessing more accurate models of the biological catalyst.


Assuntos
Cálcio/química , Manganês/química , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Cálcio/metabolismo , Elétrons , Ligantes , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
15.
Chemistry ; 20(18): 5327-37, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24664616

RESUMO

The reaction of (µ-Cl)2Ni2(NHC)2 (NHC = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IPr) or 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr)) with either one equivalent of sodium cyclopentadienyl (NaCp) or lithium indenyl (LiInd) results in the formation of diamagnetic NHC supported Ni(I) dimers of the form (µ-Cp)(µ-Cl)Ni2(NHC)2 (NHC = IPr (1 a) or SIPr (1 b); Cp = C5H5) or (µ-Ind)(µ-Cl)Ni2(NHC)2 (NHC = IPr (2 a) or SIPr (2 b); Ind = C7H9), which contain bridging Cp and indenyl ligands. The corresponding reaction between two equivalents of NaCp or LiInd and (µ-Cl)2Ni2(NHC)2 (NHC = IPr or SIPr) generates unusual 17 valence electron Ni(I) monomers of the form (η(5)-Cp)Ni(NHC) (NHC = IPr (3 a) or SIPr (3 b)) or (η(5)-Ind)Ni(NHC) (NHC = IPr (4 a) or SIPr (4 b)), which have nonlinear geometries. A combination of DFT calculations and NBO analysis suggests that the Ni(I) monomers are more strongly stabilized by the Cp ligand than by the indenyl ligand, which is consistent with experimental results. These calculations also show that the monomers have a lone unpaired-single-electron in their valence shell, which is the reason for the nonlinear structures. At room temperature the Cp bridged dimer (µ-Cp)(µ-Cl)Ni2(NHC)2 undergoes homolytic cleavage of the Ni-Ni bond and is in equilibrium with (η(5)-Cp)Ni(NHC) and (µ-Cl)2Ni2(NHC)2. There is no evidence that this equilibrium occurs for (µ-Ind)(µ-Cl)Ni2(NHC)2. DFT calculations suggest that a thermally accessible triplet state facilitates the homolytic dissociation of the Cp bridged dimers, whereas for bridging indenyl species this excited triplet state is significantly higher in energy. In stoichiometric reactions, the Ni(I) monomers (η(5)-Cp)Ni(NHC) or (η(5)-Ind)Ni(NHC) undergo both oxidative and reductive processes with mild reagents. Furthermore, they are rare examples of active Ni(I) precatalysts for the Suzuki-Miyaura reaction. Complexes 1 a, 2 b, 3 a, 4 a and 4 b have been characterized by X-ray crystallography.

16.
Inorg Chem ; 53(4): 2133-43, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24499462

RESUMO

The preparation of a number of iron complexes supported by ligands of the type HN{CH2CH2(PR2)}2 [R = isopropyl (((i)Pr)PNP) or cyclohexyl ((Cy)PNP)] is reported. This is the first time this important bifunctional ligand has been coordinated to iron. The iron(II) complexes (((i)Pr)PNP)FeCl2(CO) (1a) and ((Cy)PNP)FeCl2(CO) (1b) were synthesized through the reaction of the appropriate free ligand and FeCl2 in the presence of CO. The iron(0) complex (((i)Pr)PNP)Fe(CO)2 (2a) was prepared through the reaction of Fe(CO)5 with ((i)Pr)PNP, while irradiating with UV light. Compound 2a is unstable in CH2Cl2 and is oxidized to 1a via the intermediate iron(II) complex [(((i)Pr)PNP)FeCl(CO)2]Cl (3a). The reaction of 2a with HCl generated the related complex [(((i)Pr)PNP)FeH(CO)2]Cl (4a), while the neutral iron hydrides (((i)Pr)PNP)FeHCl(CO) (5a) and ((Cy)PNP)FeHCl(CO) (5b) were synthesized through the reaction of 1a or 1b with 1 equiv of (n)Bu4NBH4. The related reaction between 1a and excess NaBH4 generated the unusual η(1)-HBH3 complex (((i)Pr)PNP)FeH(η(1)-HBH3)(CO) (6a). This complex features a bifurcated intramolecular dihydrogen bond between two of the hydrogen atoms associated with the η(1)-HBH3 ligand and the N-H proton of the pincer ligand, as well as intermolecular dihydrogen bonding. The protonation of 6a with 2,6-lutidinium tetraphenylborate resulted in the formation of the dimeric complex [{(((i)Pr)PNP)FeH(CO)}2(µ2,η(1):η(1)-H2BH2)][BPh4] (7a), which features a rare example of a µ2,η(1):η(1)-H2BH2 ligand. Unlike all previous examples of complexes with a µ2,η(1):η(1)-H2BH2 ligand, there is no metal-metal bond and additional bridging ligand supporting the borohydride ligand in 7a; however, it is proposed that two dihydrogen-bonding interactions stabilize the complex. Complexes 1a, 2a, 3a, 4a, 5a, 6a, and 7a were characterized by X-ray crystallography.

17.
Inorg Chem ; 53(12): 6066-72, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24878059

RESUMO

Transition metal complexes supported by pincer ligands have many important applications. Here, the syntheses of five-coordinate PNP pincer-supported Fe complexes of the type (PNP)FeCl2 (PNP = HN{CH2CH2(PR2)}2, R = iPr ((iPr)PNP), tBu ((tBu)PNP), or cyclohexyl ((Cy)PNP)) are reported. In the solid state, ((iPr)PNP)FeCl2 was characterized in two different geometries by X-ray crystallography. In one form, the (iPr)PNP ligand binds to the Fe center in the typical meridional geometry for a pincer ligand, whereas in the other form, the (iPr)PNP ligand binds in a facial geometry. The electronic structures and geometries of all of the (PNP)FeCl2 complexes were further explored using (57)Fe Mössbauer and magnetic circular dichroism spectroscopy. These measurements show that in some cases two isomers of the (PNP)FeCl2 complexes are present in solution and conclusively demonstrate that binding of the PNP ligand is flexible, which may have implications for the reactivity of this important class of compounds.

18.
J Am Chem Soc ; 135(7): 2478-81, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23398467

RESUMO

Acid treatment of densely substituted 2-silyl-1,2-dihydropyridines provides a new and convenient entry to reactive azomethine ylides that can (1) be protonated and reduced with high stereoselectivity to give piperidines, (2) participate in [3 + 2] dipolar cycloaddition to give tropanes, and (3) undergo a Nazarov-like 6-π electrocyclization that upon reduction give 2-azabicyclo[3.1.0] systems.


Assuntos
Compostos Aza/síntese química , Compostos Azo/química , Compostos Bicíclicos com Pontes/síntese química , Piperidinas/síntese química , Tiossemicarbazonas/química , Tropanos/síntese química , Compostos Aza/química , Compostos Bicíclicos com Pontes/química , Ciclização , Espectroscopia de Ressonância Magnética , Piperidinas/química , Estereoisomerismo , Tropanos/química
19.
Inorg Chem ; 52(13): 7615-22, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23777320

RESUMO

Four manganese complexes of pentadentate ligands have been studied for their ability to act as oxygen evolution catalysts in the presence of Oxone or hydrogen peroxide. The complexes [Mn(PaPy3)(NO3)](ClO4) (1) (PaPy3H = N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy3)(µ-O)(PaPy3)Mn](ClO4)2 (2) feature an anionic carboxamido ligand trans to the labile sixth coordination site, while [Mn(N4Py)OTf](OTf) (3) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and [Mn(PY5)(OH2)](ClO4)2 (4) (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)-pyridine) have neutral ligands of varying flexibility. 1 and 2 are shown to evolve oxygen in the presence of either Oxone or hydrogen peroxide, but 3 evolves oxygen only in the presence of hydrogen peroxide. 4 is inactive. The activity of 1 and 2 with Oxone suggests that the presence of an anionic N-donor ligand plays a role in stabilizing putative high-valent intermediates. Anionic N-donor ligands may be viewed as alternatives to µ-oxo ligands that are prone to protonation in low-valent Mn species formed during a catalytic cycle, resulting in loss of catalyst structure.


Assuntos
Complexos de Coordenação/química , Peróxido de Hidrogênio/química , Manganês/química , Oxigênio/química , Ácidos Sulfúricos/química , Amidas/química , Ânions/química , Catálise , Ligantes , Oxirredução , Piridinas/química , Água/química
20.
Angew Chem Int Ed Engl ; 52(43): 11290-3, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24009214

RESUMO

The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA