Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Physiol ; 86: 123-147, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931168

RESUMO

In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.


Assuntos
Proteínas de Membrana , Retículo Sarcoplasmático , Humanos , Proteínas de Membrana/fisiologia , Membrana Celular/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
2.
Am J Physiol Cell Physiol ; 326(3): C795-C809, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223925

RESUMO

Mitsugumin 23 (MG23) has been identified as a ball-shaped cation channel in the sarcoplasmic reticulum (SR) but its physiological role remains unclear. This study aimed to examine the contribution of MG23 to Ca2+ storage function in skeletal muscle by using Mg23-knockout (Mg23-/-) mice. There was no difference in the isometric specific force of the extensor digitorum longus (EDL) and soleus (SOL) muscles between Mg23-/- and wild-type (Wt) mice. In Mg23-/- mice, the calsequestrin 2 content in the EDL muscle and SR Ca2+-ATPase 2 content in the SOL were increased. We have examined SR and myofibril functions using mechanically skinned fibers and determined their fiber types based on the response to Sr2+, which showed that Mg23-/- mice, compared with Wt, had: 1) elevated total Ca2+ content in the membranous components including SR, mitochondria, and transverse tubular system referred to as endogenous Ca2+ content, in both type I and II fibers of the EDL and SOL; 2) increased maximal Ca2+ content in both type I and II fibers of the EDL and SOL; 3) decreased SR Ca2+ leakage in type I fibers of the SOL; and 4) enhanced SR Ca2+ uptake in type I fibers of the SOL, although myofibril function was not different in both type I and II fibers of the SOL and EDL muscles. These results suggest that MG23 decreases SR Ca2+ storage in both type I and type II fibers, likely due to increased SR Ca2+ leakage.NEW & NOTEWORTHY The function of calcium storage within sarcoplasmic reticulum (SR) plays a pivotal role in influencing the health and disease states of skeletal muscle. In the present study, we demonstrated that mitsgumin 23, a novel non-selective cation channel, modifies SR Ca2+ storage in skeletal muscle fibers. These findings provide valuable insights into the physiological regulation of Ca2+ in skeletal muscle, offering significant potential for uncovering the mechanisms underlying muscle fatigue, muscle adaptation, and muscle diseases.


Assuntos
Músculo Esquelético , Retículo Sarcoplasmático , Animais , Camundongos , Cátions , Fadiga Muscular , Fibras Musculares Esqueléticas
3.
Int Immunol ; 35(3): 147-155, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36480702

RESUMO

Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.


Assuntos
Imunidade Inata , Linfócitos , Animais , Camundongos , Regulação da Expressão Gênica , Interferon gama/metabolismo , Células Matadoras Naturais , Receptores do Ácido Retinoico/metabolismo
4.
J Cell Physiol ; 237(7): 2980-2991, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35511727

RESUMO

Glucose transporter GLUT1 plays a primary role in the glucose metabolism of cancer cells. Here, we found that cardiac glycosides (CGs) such as ouabain, oleandrin, and digoxin, which are Na+ ,K+ -ATPase inhibitors, decreased the GLUT1 expression in the plasma membrane of human cancer cells (liver cancer HepG2, colon cancer HT-29, gastric cancer MKN45, and oral cancer KB cells). The effective concentration of ouabain was lower than that for inhibiting the activity of Na+ ,K+ -ATPase α1-isoform (α1NaK) in the plasma membrane. The CGs also inhibited [3 H]2-deoxy- d-glucose uptake, lactate secretion, and proliferation of the cancer cells. In intracellular vesicles of human cancer cells, Na+ ,K+ -ATPase α3-isoform (α3NaK) is abnormally expressed. Here, a low concentration of ouabain inhibited the activity of α3NaK. Knockdown of α3NaK significantly inhibited the ouabain-decreased GLUT1 expression in HepG2 cells, while the α1NaK knockdown did not. Consistent with the results in human cancer cells, CGs had no effect on GLUT1 expression in rat liver cancer dRLh-84 cells where α3NaK was not endogenously expressed. Interestingly, CGs decreased GLUT expression in the dRLh-84 cells exogenously expressing α3NaK. In HepG2 cells, α3NaK was found to be colocalized with TPC1, a Ca2+ -releasing channel activated by nicotinic acid adenine dinucleotide phosphate (NAADP). The CGs-decreased GLUT1 expression was significantly inhibited by a Ca2+ chelator, a Ca2+ -ATPase inhibitor, and a NAADP antagonist. The GLUT1 decrease was also attenuated by inhibitors of dynamin and phosphatidylinositol-3 kinases (PI3Ks). In conclusion, the binding of CGs to intracellular α3NaK elicits the NAADP-mediated Ca2+ mobilization followed by the dynamin-dependent GLUT1 endocytosis in human cancer cells.


Assuntos
Glicosídeos Cardíacos , Neoplasias Hepáticas , Animais , Glicosídeos Cardíacos/metabolismo , Glicosídeos Cardíacos/farmacologia , Proliferação de Células , Endocitose , Transportador de Glucose Tipo 1 , Humanos , Ouabaína/farmacologia , Isoformas de Proteínas/metabolismo , Ratos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Circ Res ; 126(4): 417-435, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31805819

RESUMO

RATIONALE: Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE: In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS: We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS: In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiotônicos/farmacologia , Eletrocardiografia/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Fibrose/genética , Fibrose/fisiopatologia , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Isoproterenol/farmacologia , Camundongos Knockout , Simulação de Acoplamento Molecular , Miocárdio/citologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
6.
Cereb Cortex ; 30(4): 2167-2184, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31711114

RESUMO

Seizure-related gene 6 (Sez6), Sez6-Like (Sez6L), and Sez6-Like 2 (Sez6L2) comprise a family of homologous proteins widely expressed throughout the brain that have been linked to neurodevelopmental and psychiatric disorders. Here, we use Sez6 triple knockout (TKO) mice, which lack all three Sez6 family proteins, to demonstrate that Sez6 family proteins regulate dendritic spine structure and cognitive functions, motor learning, and maintenance of motor functions across the lifespan. Compared to WT controls, we found that Sez6 TKO mice had impaired motor learning and their motor coordination was negatively affected from 6 weeks old and declined more rapidly as they aged. Sez6 TKO mice had reduced spine density in the hippocampus and dendritic spines were shifted to more immature morphologies in the somatosensory cortex. Cognitive testing revealed that they had enhanced stress responsiveness, impaired working, and spatial short-term memory but intact spatial long-term memory in the Morris water maze albeit accompanied by a reversal deficit. Our study demonstrates that the lack of Sez6 family proteins results in phenotypes commonly associated with neuropsychiatric disorders making it likely that Sez6 family proteins contribute to the complex etiologies of these disorders.


Assuntos
Cognição/fisiologia , Espinhas Dendríticas/metabolismo , Locomoção/fisiologia , Memória de Curto Prazo/fisiologia , Destreza Motora/fisiologia , Proteínas do Tecido Nervoso/deficiência , Animais , Espinhas Dendríticas/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
7.
J Biol Chem ; 294(35): 13093-13105, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308177

RESUMO

Functional coupling between large-conductance Ca2+-activated K+ (BKCa) channels in the plasma membrane (PM) and ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) is an essential mechanism for regulating mechanical force in most smooth muscle (SM) tissues. Spontaneous Ca2+ release through RyRs (Ca2+ sparks) and subsequent BKCa channel activation occur within the PM-SR junctional sites. We report here that a molecular interaction of caveolin-1 (Cav1), a caveola-forming protein, with junctophilin-2 (JP2), a bridging protein between PM and SR, positions BKCa channels near RyRs in SM cells (SMCs) and thereby contributes to the formation of a molecular complex essential for Ca2+ microdomain function. Approximately half of all Ca2+ sparks occurred within a close distance (<400 nm) from fluorescently labeled JP2 or Cav1 particles, when they were moderately expressed in primary SMCs from mouse mesenteric artery. The removal of caveolae by genetic Cav1 ablation or methyl-ß-cyclodextrin treatments significantly reduced coupling efficiency between Ca2+ sparks and BKCa channel activity in SMCs, an effect also observed after JP2 knockdown in SMCs. A 20-amino acid-long region in JP2 appeared to be essential for the observed JP2-Cav1 interaction, and we also observed an interaction between JP2 and the BKCa channel. It can be concluded that the JP2-Cav1 interaction provides a structural and functional basis for the Ca2+ microdomain at PM-SR junctions and mediates cross-talk between RyRs and BKCa channels, converts local Ca2+ sparks into membrane hyperpolarization, and contributes to stabilizing resting tone in SMCs.


Assuntos
Cálcio/metabolismo , Caveolinas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Caveolinas/química , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
8.
J Physiol ; 597(10): 2691-2705, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30907436

RESUMO

KEY POINTS: There are two subtypes of trimeric intracellular cation (TRIC) channels but their distinct single-channel properties and physiological regulation have not been characterized. We examined the differences in function between native skeletal muscle sarcoplasmic reticulum (SR) K+ -channels from wild-type (WT) mice (where TRIC-A is the principal subtype) and from Tric-a knockout (KO) mice that only express TRIC-B. We find that lone SR K+ -channels from Tric-a KO mice have a lower open probability and gate more frequently in subconducting states than channels from WT mice but, unlike channels from WT mice, multiple channels gate with high open probability with a more than six-fold increase in activity when four channels are present in the bilayer. No evidence was found for a direct gating interaction between ryanodine receptor and SR K+ -channels in Tric-a KO SR, suggesting that TRIC-B-TRIC-B interactions are highly specific and may be important for meeting counterion requirements during excitation-contraction coupling in tissues where TRIC-A is sparse or absent. ABSTRACT: The trimeric intracellular cation channels, TRIC-A and TRIC-B, represent two subtypes of sarcoplasmic reticulum (SR) K+ -channel but their individual functional roles are unknown. We therefore compared the biophysical properties of SR K+ -channels derived from the skeletal muscle of wild-type (WT) or Tric-a knockout (KO) mice. Because TRIC-A is the major TRIC-subtype in skeletal muscle, WT SR will predominantly contain TRIC-A channels, whereas Tric-a KO SR will only contain TRIC-B channels. When lone SR K+ -channels were incorporated into bilayers, the open probability (Po) of channels from Tric-a KO mice was markedly lower than that of channels from WT mice; gating was characterized by shorter opening bursts and more frequent brief subconductance openings. However, unlike channels from WT mice, the Po of SR K+ -channels from Tric-a KO mice increased as increasing channel numbers were present in the bilayer, driving the channels into long sojourns in the fully open state. When co-incorporated into bilayers, ryanodine receptor channels did not directly affect the gating of SR K+ -channels, nor did the presence or absence of SR K+ -channels influence ryanodine receptor activity. We suggest that because of high expression levels in striated muscle, TRIC-A produces most of the counterion flux required during excitation-contraction coupling. TRIC-B, in contrast, is sparsely expressed in most cells and, although lone TRIC-B channels exhibit low Po, the high Po levels reached by multiple TRIC-B channels may provide a compensatory mechanism to rapidly restore K+ gradients and charge differences across the SR of tissues containing few TRIC-A channels.


Assuntos
Retículo Endoplasmático/metabolismo , Canais Iônicos/metabolismo , Músculo Esquelético/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Feminino , Canais Iônicos/genética , Troca Iônica , Masculino , Camundongos , Camundongos Knockout , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia
9.
Biochem Biophys Res Commun ; 518(3): 605-609, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31445709

RESUMO

In the stomach, Sonic Hedgehog (Shh) is highly expressed in gastric parietal cells, and acts as a morphogen in early development of the organ. Here, we found that the cleaved N-terminal fragment of Shh (Shh-N) was abundantly expressed in hog gastric vesicles derived from the apical membrane of parietal cells. Interestingly, Shh-N recombinant significantly decreased K+-dependent ATP-hydrolyzing activity, which is sensitive to an inhibitor of H+,K+-ATPase (SCH28080), in hog gastric tubulovesicles and membrane fractions of the H+,K+-ATPase-expressing cells. In the living cells, Shh-N recombinant inhibited the SCH28080-sensitive 86Rb+-uptake. Together, Shh-N may directly bind to extracellular side of H+,K+-ATPase, and negatively regulates the pump activity. This is the first report to explore non-morphogenic property of Shh on ion transporters.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Proteínas Hedgehog/metabolismo , Células Parietais Gástricas/metabolismo , Animais , Linhagem Celular , Humanos , Hidrólise , Coelhos , Proteínas Recombinantes/metabolismo , Suínos
10.
Biochem J ; 475(1): 169-183, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29170159

RESUMO

Reduced protein expression of the cardiac ryanodine receptor type 2 (RyR2) is thought to affect the susceptibility to stress-induced ventricular tachyarrhythmia (VT) and cardiac alternans, but direct evidence for the role of RyR2 protein expression in VT and cardiac alternans is lacking. Here, we used a mouse model (crrm1) that expresses a reduced level of the RyR2 protein to determine the impact of reduced RyR2 protein expression on the susceptibility to VT, cardiac alternans, cardiac hypertrophy, and sudden death. Electrocardiographic analysis revealed that after the injection of relatively high doses of caffeine and epinephrine (agents commonly used for stress test), wild-type (WT) mice displayed long-lasting VTs, whereas the crrm1 mutant mice exhibited no VTs at all, indicating that the crrm1 mutant mice are resistant to stress-induced VTs. Intact heart Ca2+ imaging and action potential (AP) recordings showed that the crrm1 mutant mice are more susceptible to fast-pacing induced Ca2+ alternans and AP duration alternans compared with WT mice. The crrm1 mutant mice also showed an increased heart-to-body-weight ratio and incidence of sudden death at young ages. Furthermore, the crrm1 mutant hearts displayed altered Ca2+ transients with increased time-to-peak and decay time (T50), increased ventricular wall thickness and ventricular cell area compared with WT hearts. These results indicate that reduced RyR2 protein expression suppresses stress-induced VTs, but enhances the susceptibility to cardiac alternans, hypertrophy, and sudden death.


Assuntos
Cálcio/metabolismo , Cardiomegalia/genética , Ventrículos do Coração/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Sinalização do Cálcio , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Morte Súbita Cardíaca/patologia , Modelos Animais de Doenças , Epinefrina/farmacologia , Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Camundongos , Camundongos Transgênicos , Contração Muscular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Técnicas de Cultura de Órgãos , Periodicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Estresse Fisiológico/efeitos dos fármacos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 113(10): 2762-7, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26929330

RESUMO

Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Junções Intercelulares/metabolismo , Células Jurkat , Proteínas de Membrana/genética , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Interação Estromal , Linfócitos T/ultraestrutura
12.
Am J Physiol Cell Physiol ; 315(1): C1-C9, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537866

RESUMO

Physiological functions of type 3 ryanodine receptors (RyR3) in smooth muscle (SM) tissues are not well understood, in spite of their wide expression. However, the short isoform of RyR3 is known to be a dominant-negative variant (DN-RyR3), which may negatively regulate functions of both RyR2 and full-length (FL) RyR3 by forming hetero-tetramers. Here, functional roles of RyR3 in the regulation of Ca2+ signaling in mesenteric artery SM cells (MASMCs) were examined using RyR3 homozygous knockout mice (RyR3-/-). Quantitative PCR analyses suggested that the predominant RyR3 subtype in MASMs from wild-type mice (RyR3+/+) was DN-RyR3. In single MASMCs freshly isolated from RyR3-/-, the EC50 of caffeine to induce Ca2+ release was lower than that in RyR3+/+ myocytes. The amplitude and frequency of Ca2+ sparks and spontaneous transient outward currents in MASMCs from RyR3-/- were all larger than those from RyR3+/+. Importantly, mRNA and functional expressions of voltage-dependent Ca2+ channel and large-conductance Ca2+-activated K+ (BK) channel in MASMCs from RyR3-/- were identical to those from RyR3+/+. However, in the presence of BK channel inhibitor, paxilline, the pressure rises induced by BayK8644 in MA vascular beds of RyR3-/- were significantly larger than in those of RyR3+/+. This indicates that the negative feedback effects of BK channel activity on intracellular Ca2+ signaling was enhanced in RyR3-/-. Thus, RyR3, and, in fact, mainly DN-RyR3, via a complex with RyR2 suppresses Ca2+ release and indirectly regulated membrane potential by reducing BK channel activity in MASMCs and presumably can affect the regulation of intrinsic vascular tone.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo
13.
J Biol Chem ; 292(32): 13361-13373, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28630041

RESUMO

Aberrant Zn2+ homeostasis is associated with dysregulated intracellular Ca2+ release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca2+ leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca2+ leakage through an uncharacterized mechanism. We sought to examine the role of Zn2+ in shaping intracellular Ca2+ release in cardiac muscle. Cardiac SR vesicles prepared from sheep or mouse ventricular tissue were incorporated into phospholipid bilayers under voltage-clamp conditions, and the direct action of Zn2+ on RyR2 channel function was examined. Under diastolic conditions, the addition of pathophysiological concentrations of Zn2+ (≥2 nm) caused dysregulated RyR2-channel openings. Our data also revealed that RyR2 channels are not the only SR Ca2+-permeable channels regulated by Zn2+ Elevating the cytosolic Zn2+ concentration to 1 nm increased the activity of the transmembrane protein mitsugumin 23 (MG23). The current amplitude of the MG23 full-open state was consistent with that previously reported for RyR2 sub-conductance gating, suggesting that in heart failure in which Zn2+ levels are elevated, RyR2 channels do not gate in a sub-conductance state, but rather MG23-gating becomes more apparent. We also show that in H9C2 cells exposed to ischemic conditions, intracellular Zn2+ levels are elevated, coinciding with increased MG23 expression. In conclusion, these data suggest that dysregulated Zn2+ homeostasis alters the function of both RyR2 and MG23 and that both ion channels play a key role in diastolic SR Ca2+ leakage.


Assuntos
Sinalização do Cálcio , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Zinco/metabolismo , Matadouros , Animais , Hipóxia Celular , Linhagem Celular , Regulação da Expressão Gênica , Bicamadas Lipídicas/metabolismo , Magnésio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Permeabilidade , Ratos , Carneiro Doméstico
14.
Biochem Biophys Res Commun ; 505(4): 1251-1256, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333092

RESUMO

Many studies have shown the feasibility of in vivo cardiac transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in animal experiments. However, nano-structural confirmation of the successful incorporation of the engrafted iPSC-CMs including electron microscopy (EM) has not been accomplished, partly because identification of graft cells in EM has proven to be difficult. Using APEX2, an engineered ascorbate peroxidase imaging tag, we successfully localized and analyzed the fine structure of sarcomeres and the excitation contraction machinery of iPSC-CMs 6 months after their engraftment in infarcted mouse hearts. APEX2 made iPSC-CMs visible in multiple imaging modalities including light microscopy, X-ray microscopic tomography, transmission EM, and scanning EM. EM tomography allowed assessment of the differentiation state of APEX2-positive iPSC-CMs and analysis of the fine structure of the sarcomeres including T-tubules and dyads.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miocárdio/citologia , Miócitos Cardíacos/transplante , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Coração/anatomia & histologia , Humanos , Masculino , Camundongos , Sondas Moleculares , Infarto do Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia
15.
J Physiol ; 595(14): 4769-4784, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28387457

RESUMO

KEY POINTS: The role of trimeric intracellular cation (TRIC) channels is not known, although evidence suggests they may regulate ryanodine receptors (RyR) via multiple mechanisms. We therefore investigated whether Tric-a gene knockout (KO) alters the single-channel function of skeletal RyR (RyR1). We find that RyR1 from Tric-a KO mice are more sensitive to inhibition by divalent cations, although they respond normally to cytosolic Ca2+ , ATP, caffeine and luminal Ca2+ . In the presence of Mg2+ , ATP cannot effectively activate RyR1 from Tric-a KO mice. Additionally, RyR1 from Tric-a KO mice are not activated by protein kinase A phosphorylation, demonstrating a defect in the ability of ß-adrenergic stimulation to regulate sarcoplasmic reticulum (SR) Ca2+ -release. The defective RyR1 gating that we describe probably contributes significantly to the impaired SR Ca2+ -release observed in skeletal muscle from Tric-a KO mice, further highlighting the importance of TRIC-A for normal physiological regulation of SR Ca2+ -release in skeletal muscle. ABSTRACT: The type A trimeric intracellular cation channel (TRIC-A) is a major component of the nuclear and sarcoplasmic reticulum (SR) membranes of cardiac and skeletal muscle, and is localized closely with ryanodine receptor (RyR) channels in the SR terminal cisternae. The skeletal muscle of Tric-a knockout (KO) mice is characterized by Ca2+ overloaded and swollen SR and by changes in the properties of SR Ca2+ release. We therefore investigated whether RyR1 gating behaviour is modified in the SR from Tric-a KO mice by incorporating native RyR1 into planar phospholipid bilayers under voltage-clamp conditions. We find that RyR1 channels from Tric-a KO mice respond normally to cytosolic Ca2+ , ATP, adenine, caffeine and to luminal Ca2+ . However, the channels are more sensitive to the inactivating effects of divalent cations, thus, in the presence of Mg2+ , ATP is inadequate as an activator. Additionally, channels are not characteristically activated by protein kinase A even though the phosphorylation levels of Ser2844 are similar to controls. The results of the present study suggest that TRIC-A functions as an excitatory modulator of RyR1 channels within the SR terminal cisternae. Importantly, this regulatory action of TRIC-A appears to be independent of (although additive to) any indirect consequences to RyR1 activity that arise as a result of K+ fluxes across the SR via TRIC-A.


Assuntos
Canais Iônicos/fisiologia , Músculo Esquelético/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Adenina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Células CHO , Cafeína/farmacologia , Cálcio/farmacologia , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citosol/fisiologia , Canais Iônicos/genética , Magnésio/farmacologia , Camundongos Knockout , Mutação
16.
Biochim Biophys Acta ; 1858(6): 1228-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922883

RESUMO

The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated ß-subunit (ßHK). ßHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of ßHK. Sialylation of ßHK was found in LLC-PK1 cells stably expressing αHK and ßHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-ßHK antibody. The sialic acids of ßHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of ßHK. In contrast, ßHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of ßHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that ßHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of ßHK positively regulate the enzymatic activity of αHK.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Estômago/enzimologia , Animais , Famotidina/farmacologia , ATPase Trocadora de Hidrogênio-Potássio/química , Células LLC-PK1 , Ácido N-Acetilneuramínico/metabolismo , Estômago/efeitos dos fármacos , Suínos
17.
Pflugers Arch ; 469(2): 313-326, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27866274

RESUMO

Ryanodine receptor type 3 (RyR3) is expressed in myometrial smooth muscle cells (MSMCs). The short isoform of RyR3 is a dominant negative variant (DN-RyR3) and negatively regulates the functions of RyR2 and full-length (FL)-RyR3. DN-RyR3 has been suggested to function as a major RyR3 isoform in non-pregnant (NP) mouse MSMCs, and FL-RyR3 may also be upregulated during pregnancy (P). This increase in the FL-RyR3/DN-RyR3 ratio may contribute to the strong contractions by MSMCs for parturition. In the present study, spontaneous contractions by the myometrium in NP and P mice were highly susceptible to nifedipine but were not affected by ryanodine. Ca2+ image analyses under a voltage clamp revealed that the influx of Ca2+ through voltage-dependent Ca2+ channels did not cause the release of Ca2+ from the sarcoplasmic reticulum (SR). Cytosolic Ca2+ concentrations ([Ca2+]cyt) in MSMCs were not affected by caffeine. Despite the abundant expression of large conductance Ca2+-activated K+ channels in MSMCs, spontaneous transient outward currents were not observed in the resting state because of the substantive lack of Ca2+ sparks. Quantitative PCR and Western blot analyses indicated that DN-RyR3 was strongly expressed in the NP myometrium, while the expression of FL-RyR3 and DN-RyR3 was markedly reduced in the P myometrium. The messenger RNA (mRNA) expression of RyR2 and RyR1 was negligible in the NP and P myometria. Moreover, RyR3 knockout mice may become pregnant and deliver normally. Thus, we concluded that none of the RyR subtypes, including RyR3, play a significant role in the regulation of [Ca2+]cyt in or contractions by mouse MSMCs regardless of pregnancy.


Assuntos
Contração Muscular/fisiologia , Miométrio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miométrio/efeitos dos fármacos , Potássio/metabolismo , Gravidez , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
18.
Clin Calcium ; 27(3): 333-338, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28232646

RESUMO

Striated muscle cells form specialized junctional membrane complexes(JMCs)between the cell-surface transverse tubule and sarcoplasmic reticulum(SR)for setting up the excitation-contraction coupling machinery converting depolarization into Ca2+ release signals. Junctophilin subtypes, namely JP1-JP4, are proteins that construct JMCs by binding to the cell membrane and spanning the SR membrane. Recent studies demonstrated that the mutations and altered expression of JP2 take part in cardiac diseases. JPs dominantly affect Ca2+ signaling in striated muscle, and thus may be involved in pathogeneses and progressive pathophysiological conditions in a variety of muscle-related diseases.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Acoplamento Excitação-Contração , Animais , Membrana Celular/química , Humanos , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L452-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637632

RESUMO

Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Endocitose/fisiologia , Células Endoteliais/metabolismo , Pulmão/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Pulmão/citologia , Proteínas de Membrana , Camundongos
20.
EMBO J ; 31(2): 417-28, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22036948

RESUMO

Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Óxido Nítrico/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Apoptose/efeitos dos fármacos , Cerebelo/citologia , Córtex Cerebral/citologia , Células HEK293 , Humanos , Técnicas In Vitro , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/fisiologia , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA