Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 19(43): 14411-5, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24123381

RESUMO

Switchable regioselectivity: This study represents the first carbobismuthination of alkenes achieved by the treatment of an alkene with a bismuth halide and a ketene silyl acetal. This reaction is particularly noteworthy in that a change in the type of halogen on a bismuth atom very easily switched the regioselectivity.

2.
Acta Biomater ; 166: 301-316, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164300

RESUMO

Tissue engineers have utilised a variety of three-dimensional (3D) scaffolds for controlling multicellular dynamics and the resulting tissue microstructures. In particular, cutting-edge microfabrication technologies, such as 3D bioprinting, provide increasingly complex structures. However, unpredictable microtissue detachment from scaffolds, which ruins desired tissue structures, is becoming an evident problem. To overcome this issue, we elucidated the mechanism underlying collective cellular detachment by combining a new computational simulation method with quantitative tissue-culture experiments. We first quantified the stochastic processes of cellular detachment shown by vascular smooth muscle cells on model curved scaffolds and found that microtissue morphologies vary drastically depending on cell contractility, substrate curvature, and cell-substrate adhesion strength. To explore this mechanism, we developed a new particle-based model that explicitly describes stochastic processes of multicellular dynamics, such as adhesion, rupture, and large deformation of microtissues on structured surfaces. Computational simulations using the developed model successfully reproduced characteristic detachment processes observed in experiments. Crucially, simulations revealed that cellular contractility-induced stress is locally concentrated at the cell-substrate interface, subsequently inducing a catastrophic process of collective cellular detachment, which can be suppressed by modulating cell contractility, substrate curvature, and cell-substrate adhesion. These results show that the developed computational method is useful for predicting engineered tissue dynamics as a platform for prediction-guided scaffold design. STATEMENT OF SIGNIFICANCE: Microfabrication technologies aiming to control multicellular dynamics by engineering 3D scaffolds are attracting increasing attention for modelling in cell biology and regenerative medicine. However, obtaining microtissues with the desired 3D structures is made considerably more difficult by microtissue detachments from scaffolds. This study reveals a key mechanism behind this detachment by developing a novel computational method for simulating multicellular dynamics on designed scaffolds. This method enabled us to predict microtissue dynamics on structured surfaces, based on cell mechanics, substrate geometry, and cell-substrate interaction. This study provides a platform for the physics-based design of micro-engineered scaffolds and thus contributes to prediction-guided biomaterials design in the future.


Assuntos
Miócitos de Músculo Liso , Engenharia Tecidual , Engenharia Tecidual/métodos , Adesão Celular , Microtecnologia , Alicerces Teciduais/química
4.
Carbohydr Res ; 341(2): 181-90, 2006 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-16343462

RESUMO

Naturally occurring glycopeptides and glycoproteins usually contain more than one glycosylation site, and the structure of the carbohydrate attached is often different from site to site. Therefore, synthetic methods for preparing peptides and proteins that are glycosylated at multiple sites, possibly with different carbohydrate structures, are needed. Here, we report a chemo-enzymatic approach for accomplishing this. Complex-type oligosaccharides were introduced to the calcitonin derivatives that contained two N-acetyl-D-glucosamine (GlcNAc) residues at different sites by treatment with Mucor hiemalis endo-beta-N-acetylglucosaminidase. Using this enzymatic transglycosylation reaction, three glycopeptides were produced, a calcitonin derivative with the same complex-type carbohydrate at two sites, and two calcitonin derivatives each with one complex-type carbohydrate and one GlcNAc. Starting from the derivatives with one complex-type carbohydrate and one GlcNAc, a high-mannose-type oligosaccharide was successfully transferred to the remaining GlcNAc using another endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Thus, we were able to obtain glycopeptides containing not only two complex-type carbohydrates, but also both complex and high-mannose-type oligosaccharides in a single molecule. Using the resultant glycosylated calcitonin derivatives, the effects of di-N-glycosylation on the structure and the activity of calcitonin were studied. The effect appeared to be predictable from the results of mono-N-glycosylated calcitonin derivatives.


Assuntos
Calcitonina/síntese química , Enguias , Sequência de Aminoácidos , Animais , Calcitonina/química , Calcitonina/metabolismo , Sequência de Carboidratos , Células Cultivadas , Glicosilação , Glicosiltransferases/química , Masculino , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Camundongos , Dados de Sequência Molecular , Oligossacarídeos/química , Ratos
5.
Biochim Biophys Acta ; 1661(1): 61-7, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14967475

RESUMO

The dissociation constants (pKms) of the phenothiazine drugs promazine, chlorpromazine, and triflupromazine, incorporated in the phosphatidylcholine (PC) bilayer of small unilamellar vesicles (SUV), were investigated by a 13C nuclear magnetic resonance (NMR) titration method employing their N-13CH3 (ionizable group) labelled derivatives. Use of the labelled drugs enabled direct observations of the ionization equilibrium of the N-dimethyl group. A second derivative spectrophotometric study proved that 95-98% of the phenothiazine species in the sample solutions (200 microM phenothiazine in the presence of 27 mM PC SUV) were incorporated into the PC bilayer, which simplified the calculation of pKm values by allowing that the phenothiazines in the aqueous phase could be neglected. The pKm values were calculated from the chemical shift dependence of the N-dimethyl 13C NMR signal on the pH value of sample solutions. The pKm values obtained were smaller than those measured in aqueous solutions by about one unit. The existence of cholesterol (30 mol%) in the PC bilayer showed little effect on the pKm values, suggesting that cholesterol in the bilayer does not largely affect the interfacial region where the N-dimethyl group of the incorporated phenothiazines is located. The results offered clear evidence for the pKm decrease and provided their precise values.


Assuntos
Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fenotiazinas/química , Isótopos de Carbono , Clorpromazina/química , Colesterol/química , Concentração de Íons de Hidrogênio , Fosfatidilcolinas/química , Titulometria , Triflupromazina/química
6.
Glycoconj J ; 21(6): 377-86, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15514484

RESUMO

Starting from N-glycosylated eel calcitonin derivatives that contain an N-acetyl-D-glucosamine residue specifically at the 3rd, 14th, 20th or 26th amino acid residue, corresponding glycopeptides with a complex-type oligosaccharide attached to the respective amino acid residue were synthesized by means of a transglycosylation reaction catalyzed by an endo-beta-N-acetylglucosaminidase from Mucor hiemalis . The use of a recombinant enzyme and an excess of a glycosyl donor led to a yield in excess of 60%. Calcitonin derivatives containing truncated oligosaccharides were also prepared via digestion of the complex-type N-glycan with exoglycosidases. Using these N-glycosylated calcitonin derivatives, the effect of carbohydrate structure and glycosylation site on the three-dimensional structure and the biological activity of the peptide were studied. The conformation of the peptide backbone did not change irrespective of the carbohydrate structure or the glycosylation site. However, hypocalcemic activity, calcitonin-receptor binding activity and the biodistribution of the derivatives were affected by the glycosylation and were dependent on both the carbohydrate structure and the glycosylation site. Although the larger oligosaccharides tended to hinder receptor binding, the biodistribution altered by N-glycosylation appeared to enhance the hypocalcemic activity in some cases, and the magnitude of the effect was dependent on the site of glycosylation.


Assuntos
Calcitonina/síntese química , Calcitonina/metabolismo , Oligossacarídeos/química , Animais , Calcitonina/química , Sequência de Carboidratos , Dicroísmo Circular , Glicosilação , Masculino , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA