RESUMO
Sweetpotato (Ipomoea batatas) cultivars grown in Japan are highly valued for their excellent sweetness, high quality, and good texture. The export volume of sweetpotato from Japan has been rising rapidly, with a 10-fold increase on a weight basis over the last 10 years. However, since sweetpotato is propagated vegetatively from storage roots, it is easy to cultivate and propagate this crop, prompting concerns that Japanese sweetpotato cultivars/lines are being exported overseas, cultivated without permission, or reimported. Therefore, a rapid and accurate cultivar identification methodology is needed. In this study, we comprehensively analyzed the insertion sites of Cl8 retrotransposon to develop a cultivar identification technique for the Japanese cultivars 'Beniharuka' and 'Fukumurasaki'. These two cultivars were successfully distinguished from other cultivars using a minimum of two marker sets. Using the chromatographic printed array strip (C-PAS) method for DNA signal detection, 'Beniharuka' and 'Fukumurasaki' can be precisely identified using a single strip of chromatographic paper based on multiplex DNA signals derived from the amplicons of the Cl8 insertion sites. Since this method can detect DNA signals in only ~15 minutes, we expect that our method will facilitate rapid, reliable, and convenient cultivar discrimination for on-site inspection of sweetpotato.
RESUMO
Citrus is a major cultivated crop in Japan, and new cultivars are of great interest in the Japanese and global market. Recently, the infringement of breeders' rights to citrus cultivars bred in Japan has become a problem related to the agricultural product export strategy promoted by the Japanese government. Cultivar identification systems using DNA markers are an effective tool for protecting breeders' rights. Here, a novel target cultivar-specific identification system using the chromatographic printed array strip method was developed for eight prominent Japanese citrus cultivars. A polymorphic InDel fragment specific to each cultivar was explored through the screening of published citrus InDel markers and next-generation sequencing of retrotransposon libraries. The cultivar-specific DNA marker set for each cultivar comprised 1-3 polymorphic InDel fragments in combination with a PCR-positive DNA marker for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene. The DNA markers were detected within 3 hours from DNA extraction to the detection by the C-PAS4 membrane stick following multiplex PCR. The developed system is superior as a convenient, rapid, and cost-effective DNA diagnostic method during inspection. The proposed target cultivar-specific identification system is expected to serve as an efficient tool for the injunction of suspicious registered cultivars, contributing to the protection of breeders' rights.
RESUMO
In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215â m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110â keV and 40â keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210â m away from the source, a large and uniform beam of size 14â mm (V) × 300â mm (H) [21â mm (V) × 300â mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110â keV (40â keV), which marked a 300â (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.
Assuntos
Fótons , Síncrotrons , Raios XRESUMO
SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick-Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 10(13) photons s(-1). A pinhole aperture is used to collimate the beam in the range 10-50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6-35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented.
RESUMO
Enantiomers, or stereoisomers, have crystal structures that are mirror images of each other and are thus handed, like our right and left hands. The physical properties of enantiomers are identical except for optical activity, which rotates linearly polarized light by equal amounts but in opposite directions. While conventional x-ray Bragg diffraction can determine crystal structures, it does not distinguish between right- and left-handed crystals. We show resonant Bragg diffraction using circularly polarized x rays reveals the handedness of crystals by coupling x-ray helicity to a crystal screw axis. The intensity of resonantly allowed reflection of alpha-quartz is well described by an admixture of a parity-even and a parity-odd process. Our results are of general importance and demonstrate a new method to directly study chiral motifs in structures that include biomaterials, liquid crystals, magnets, multiferroics, etc.
Assuntos
Materiais Biocompatíveis/química , Modelos Químicos , Quartzo/química , Modelos Moleculares , Estereoisomerismo , Difração de Raios XRESUMO
The degree of circular polarization of soft X-rays emitted from the multi-polarization-mode undulator of BL17SU at SPring-8 has been deduced by means of magnetic circular dichroism in core-level X-ray absorption spectroscopy for a ferrimagnetic Gd-Fe-Co amorphous thin film. The results of reference measurements performed using well characterized undulator radiation of BL25SU at SPring-8 have also been utilized. The degrees of circular polarization were presumed for all the available operational modes and were compared with simple theoretical calculations. It was found that the calculated degrees of circular polarization were validated by the measurements reasonably well and will be useful in further experiments at BL17SU.
RESUMO
The electronic structures of a series of DNA nucleobases and their dinucleotides were investigated by N 1s X-ray absorption, X-ray photoemission, and resonant X-ray emission spectroscopy. Resonant X-ray emission spectra of the guanine base and its dinucleotide indicate that it has a weak structure at the lowest binding energy; at this energy, it isolates from the main valence band and forms the HOMO state. This indicates that the HOMO state is localized in the guanine base, as claimed by valence and core photoemissions and expected from theoretical predictions. In addition, the XAS and XES profiles of the guanine dinucleotide indicate that disruption of the aromatic character of the six-membered ring results in the localization of the pi state at the imine (-N=) site of the guanine base; this may favor charge transfer among stacked guanine bases and further influence the conductivity of DNA.