Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(29): e202302714, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37217455

RESUMO

A kinetically-stabilized nitrogen-doped triangulene cation derivative has been synthesized and isolated as the stable diradical with a triplet ground state that exhibits near-infrared emission. As was the case for a triangulene derivative we previously synthesized, the triplet ground state with a large singlet-triplet energy gap was experimentally confirmed by magnetic measurements. In contrast to the triangulene derivative, the nitrogen-doped triangulene cation derivative is highly stable even in solution under air and exhibits near-infrared absorption and emission because the alternancy symmetry of triangulene is broken by the nitrogen cation. Breaking the alternancy symmetry of triplet alternant hydrocarbon diradicals by a nitrogen cation would therefore be an effective strategy to create stable diradicals possessing magnetic properties similar to the parent hydrocarbons but with different electrochemical and photophysical properties.

2.
J Am Chem Soc ; 144(8): 3370-3375, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188785

RESUMO

Bis-periazulene (cyclohepta[def]fluorene), which is an unknown pyrene isomer, was synthesized as kinetically protected forms. Its triaryl derivatives 1c-e exhibited the superimposed electronic structures of peripheral, polarized, and open-shell π-conjugated systems. In contrast to previous theoretical predictions, bis-periazulene derivatives were in the singlet ground state. Changing an aryl group controlled the energy gap between the lowest singlet-triplet states.


Assuntos
Fluorenos , Pirenos , Fluorenos/química , Isomerismo
3.
Chemistry ; 28(12): e202104447, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34964187

RESUMO

A new silyl-substituted trioxotriangulene (TOT) neutral radical and corresponding porous organosiloxanes (POSs) were synthesized. The neutral radical exhibited a peculiarly high stability and formed a diamagnetic π-dimer characteristic to TOT neutral radicals stabilized by the strong multiple SOMO-SOMO interaction in both solution and solid states. POSs including TOT units within the organosiloxane-wall were prepared by polycondensation of the silyl groups and formed microporous structures with ∼1 nm-size diameters. Redox ability of TOT units in the POS was demonstrated by the treatment of oxidant/reductant in heterogeneous suspension condition, where the TOT units were reversibly converted between reduced and neutral radical species. Furthermore, the solid-state electrochemical measurements of the POS revealed the reversible multi-stage redox ability of TOT units involving polyanionic species within the organosiloxane-wall.

4.
Chemistry ; 28(52): e202201426, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35729456

RESUMO

A novel neutral diradical of π-extended phenalenyl derivative having three oxo-groups, tri-tert-butyl-1,4,7-trioxophenalenyl, and two types of the corresponding σ-dimers were investigated. Quantum chemical calculations showed that the neutral diradical is in triplet ground state having doubly degenerate singly occupied molecular orbitals. The neutral diradical undergoes a σ-dimerization, generating two types of σ-dimers immediately after the preparation. One of the σ-dimers, which was selectively generated in the crystalline state, was a close-shell dimer linked through double-σ-bonds on the phenalenyl skeleton with a long C-C bond length of 1.66 Å. The other σ-dimer, which existed only in the solution state, was a peroxy-linked open-shell dimer in which one σ-bond was formed between two oxygen atoms. Furthermore, the temperature-dependent 1 H NMR and ESR spectra revealed that these σ-dimers are in equilibrium in the solution state by the reversible σ-bond formation/cleavage via the neutral diradical as a key intermediate.

5.
Inorg Chem ; 61(7): 3018-3023, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35129334

RESUMO

A gadolinium(III) complex coordinated with six nitronyl nitroxide radicals showed intriguing temperature-dependent changes in magnetic susceptibilities. The gadolinium(III) ion in the complex is pseudo-eight-coordinated by three singlet-ground-state diradical anion species based on nitronyl nitroxide radicals. The magnetic susceptibility (χpT) of the gadolinium(III) complex at 298 K, whose value corresponded to that of a system with 13 unpaired electrons (seven-spin system), decreased upon a lowering of the temperature to 11 K but increased upon a further lowering of the temperature. Finally, the χpT value at 2 K was found to be higher than that at room temperature. The temperature-dependent magnetic behavior could be explained by a structural change in the diradical anion ligand due to its flexibility.

6.
Angew Chem Int Ed Engl ; 61(29): e202205729, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35545548

RESUMO

Design, synthesis, and isolation of a Kekulé hydrocarbon with a triplet ground state is described. Its triplet ground state was unambiguously confirmed by ESR experiments, and the structure and fundamental physical properties were also revealed. The key feature of the molecular design is the decrease in the bonding interaction in the singlet state by aromatic stabilization of benzene rings and the increase of the exchange interaction of unpaired electrons which are favorable for the triplet state. These results contribute to the development of hydrocarbon-based organic magnetic materials.

7.
Biochem Biophys Res Commun ; 567: 42-48, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34139556

RESUMO

The structural dynamics of the chromo-shadow domain (CSD) and chromodomain (CD) of human HP1 proteins essential for heterochromatin formation were investigated at the nanosecond and nanometer scales by site-directed spin labeling electron paramagnetic resonance and pulsed double resonance spectroscopy. Distance measurements showed that the spin-labeled CSD of human HP1α and HP1γ tightly dimerizes. Unlike CD-CD interaction observed in fission yeast HP1 in an inactivated state (Canzio et al., 2013), the two CDs of HP1α and HP1γ were spatially separated from each other, dynamically mobile, and ready for a Brownian search for H3K9-tri-methyl(me3) on histones. Complex formation of the CD with H3K9me3 slowed dynamics of the domain due to a decreased diffusion constant. CSD mobility was significantly (∼1.3-fold) lower in full-length HP1α than in HP1γ, suggesting that the immobilized conformation of human HP1α shows an auto-inactivated state. Differential properties of HP1α and HP1γ to form the inactive conformation could be relevant to its physiological role in the heterochromatin formation in a cell.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Espectroscopia de Ressonância de Spin Eletrônica , Histonas/química , Humanos , Metilação , Modelos Moleculares , Domínios Proteicos
8.
Chemistry ; 27(44): 11450-11457, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038598

RESUMO

Multinuclear AuI complexes with two or three nitronyl nitroxide-2-ide radical anion and phosphine-ligand scaffolds, (NN-Au)2 -1 o, (NN-Au)2 -1 m, and (NN-Au)2 -1 p, have been synthesized to investigate the influence of AuI -AuI (aurophilic) interactions on the properties of multispin molecular systems. The desired complexes were successfully prepared in moderate yields in a one-pot synthesis from the corresponding phosphine ligand, AuI source, parent NN, and sodium hydroxide. Among the prepared complexes, (NN-Au)2 -1 o, in which an aurophilic interaction was clearly observed by crystal structure analysis, showed characteristic spin-spin interactions, electrochemical properties, and solvatochromic behavior. The results from theoretical calculations also suggested that the differences in properties between complex (NN-Au)2 -1 o and the other complexes are due to intramolecular aurophilic interactions.

9.
J Org Chem ; 86(15): 10154-10165, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34282916

RESUMO

New 4,8,12-trioxotriangulene (TOT) neutral radical derivatives having three methoxy and hydroxy groups at the α-positions were synthesized, and the substituent effects on the electronic spin and redox properties were elucidated in the theoretical and experimental methods. Due to the small SOMO coefficients at the α-positions of TOT, the methoxy groups in the TOT neutral radical had negligible effects on the electronic spin structure and redox ability. On the other hand, methoxy groups greatly increased the LUMO energy having large coefficients at α-positions and, thus, caused a remarkable negative-potential shift of the redox wave of anion species involving the dianion and trianion species. Converting the methoxy groups to hydroxy groups caused a dramatic change in the electronic structure of TOT, where the intramolecular hydrogen bonds between hydroxy groups and oxo groups strongly attracted a minus charge on the TOT skeleton. The HOMO energy of the monoanion species was significantly reduced, causing a blue shift of the HOMO-LUMO transition and an anodic shift of the redox potential. In addition, due to the steric repulsion smaller than that of the methoxy group, the hydroxy derivative showed a more planar molecular structure and a strong π-stacking ability.

10.
Phys Chem Chem Phys ; 23(36): 20152-20162, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551045

RESUMO

Quantum computers can perform full configuration interaction (full-CI) calculations by utilising the quantum phase estimation (QPE) algorithms including Bayesian phase estimation (BPE) and iterative quantum phase estimation (IQPE). In these quantum algorithms, the time evolution of wave functions for atoms and molecules is simulated conditionally with an ancillary qubit as the control, which make implementation to real quantum devices difficult. Also, most of the problems in chemistry discuss energy differences between two electronic states rather than total energies themselves, and thus direct calculations of energy gaps are promising for future applications of quantum computers to real chemistry problems. In the race of finding efficient quantum algorithms to solve quantum chemistry problems, we test a Bayesian phase difference estimation (BPDE) algorithm, which is a general algorithm to calculate the difference of two eigenphases of unitary operators in the several cases of the direct calculations of energy gaps between two electronic states on quantum computers, including vertical ionisation energies, singlet-triplet energy gaps, and vertical excitation energies. In the BPDE algorithm, state preparation is carried out conditionally on the ancillary qubit, and the time evolution of the wave functions in superposition of two electronic states are executed unconditionally. Based on our test, we conclude that BPDE is capable of computing the energy gap with an accuracy similar to BPE without controlled-time evolution simulations and with the smaller number of iterations in Bayesian optimisations.

11.
Chemistry ; 26(14): 3166-3172, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31814162

RESUMO

A triplet ground-state diradical molecule, bis(nitronyl nitroxide)-substituted diphenyldihydrophenazine (1.. ), that can be converted into a one-electron oxidized species, 1…+ , in the quartet ground state has been developed. Surprisingly, these species, 1.. and 1…+ , can be used under ambient conditions because they are reasonably stable under aerobic conditions, even in solution. The temperature-dependent magnetic susceptibilities reveal that 1.. and 1…+ are in the triplet state, with a weak exchange interaction (J1 /kB = +3.1 K) and quartet ground state with a strong exchange interaction (J2 /kB = +160 K), respectively. The interconversion between the neutral and one-electron oxidized species can be realized through electrochemical reactions. Significantly different absorption bands in the near-IR region newly appeared in the electronic spectra acquired during electrochemical oxidation/reduction.

12.
Phys Chem Chem Phys ; 22(37): 20990-20994, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940301

RESUMO

A probabilistic spin annihilation method based on the quantum phase estimation algorithm is presented for quantum chemical calculations on quantum computers. This approach can eliminate more than one spin component from the spin contaminated wave functions by single operation. Comparison with the spin annihilation operation on classical computers is given.

13.
J Phys Chem A ; 124(12): 2416-2426, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32130857

RESUMO

A series of stable and genuinely organic open-shell systems, π-conjugated phenoxyl-nitroxide free radicals (hybrid phenoxyl-nitroxide radicals), have been synthesized and their magnetic properties in the crystalline state investigated, revealing their usefulness as new building blocks for molecular magnetic materials. The salient electronic structure of the hybrid phenoxyl-nitroxide radicals is extended π-spin delocalization from the nitroxide moiety, mediating the localization effect intrinsic to nitroxide radicals. Five representative hybrid radicals containing an aliphatic, aromatic, and heteroaromatic substituent in the side part of the compact hybrid radical centers were synthesized, and their molecular/crystal structures in the crystalline state were determined by X-ray diffraction analyses. CW X-band ESR, 1H-ENDOR spectroscopy, and DFT calculations for the hybrid radicals confirmed that an unpaired spin delocalizes over the whole molecular frame including the nonconjugated fragments, suggesting the possibility of tuning their electronic properties through substituent effects in the crystalline state. Significant influence of the phenoxyl moiety on the electronic structure was analyzed in terms of the g-tensor calculations. The SQUID magnetization measurements revealed that the nitroxides bearing alkyl or aromatic substituents behave as 3D Curie-Weiss paramagnets with weak antiferromagnetic (AFM) (Θ = -1 to -2.6 K) or ferromagnetic (FM) (Θ = +0.33 K) spin-spin exchange interactions. On the other hand, heteroaromatically substituted hybrid phenoxyl-nitroxide showed significant AFM interactions with J/kB = -25.6 K. The analysis of the bulk magnetic properties based on the crystallographic data and DFT calculations revealed competition between the intermolecular AFM and FM interactions which originate from the C-O(phenoxyl)···Me(nitroxide) or (N)O-C(arom) infinite 1D head-to-tail chains and the C(arom)-C(arom) head-over-tail dimers forming 3D networks in their crystal lattices.

14.
J Am Chem Soc ; 141(26): 10165-10170, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31132260

RESUMO

A nonbenzenoid hydrocarbon, difluoreno[1,9,8- alkj:1',9',8'- gfed]heptalene 1, is synthesized. Experimental and theoretical investigations demonstrate that the planar and symmetric heptalene core within 1 effectively induces the antiaromatic and open-shell character. These properties are not shared by bisanthene 2, a benzenoid isomer of 1.

15.
Chemistry ; 25(29): 7201-7209, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30924188

RESUMO

The spin-spin and magnetic properties of two (nitronyl nitroxide)-(di-p-anisylamine-phenothiazine) diradical cation salts, (DAA-PTZ)+ -NN⋅MBr4 - (M=Ga, Fe), have been investigated. These diradical-cation species were prepared by the cross-coupling of iodophenothiazine DAA-PTZ-I with NN-AuPPh3 followed by oxidation with the thianthrenium radical cation (TA+ ⋅MBr4 - ). These salts were found to be highly stable under aerobic conditions. For the GaBr4 salt, large ferromagnetic intramolecular and small antiferromagnetic intermolecular interactions (J1 /kB =+320 K and J2 /kB =-2 K, respectively) were observed. The magnetic property of the Fe3+ salt was analyzed by using a six-spin model assuming identical intramolecular exchange interaction (J3 /kB =+320 K) and the other exchange interactions (J4 /kB =-7 K and J5 /kB =-4 K). A significant color change was observed in the UV/Vis/NIR absorption spectra upon electrochemical oxidation of the doublet DAA-PTZ-NN to the triplet (DAA-PTZ)+ -NN.

16.
Phys Chem Chem Phys ; 21(28): 15356-15361, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31270515

RESUMO

Quantum computers have an enormous impact on quantum chemical calculations. Approaches to calculate the energies of atoms and molecules on quantum computers by utilizing quantum phase estimation (QPE) and the variational quantum eigensolver (VQE) have been well documented, and dozens of methodological improvements to decrease computational costs and to mitigate errors have been reported until recently. However, the possible methodological implementation of observables on quantum computers such as calculating the spin quantum numbers of arbitrary wave functions, which is a crucial issue in quantum chemistry, has been discussed less. Here, we propose a quantum circuit to simulate the time evolution of wave functions under an S2 operator, exp(-iS2t)|Ψ, and integrate it into the QPE circuit enabling us to determine the spin quantum number of the arbitrary wave functions. We demonstrate that the spin quantum numbers of up to three spins can be determined by only one qubit measurement in QPE.

17.
J Phys Chem A ; 123(34): 7507-7517, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31373818

RESUMO

Trityl and nitroxide radicals are connected by π-topologically controlled aryl linkers, generating genuinely g-engineered biradicals. They serve as a typical model for biradicals in which the exchange (J) and hyperfine interactions compete with the g-difference electronic Zeeman interactions. The magnetic properties underlying the biradical spin Hamiltonian for solution, including J's, have been determined by multifrequency CW-ESR and 1H ENDOR spectroscopy and compared with those obtained by quantum chemical calculations. The experimental J values were in good agreement with the quantum chemical calculations. The g-engineered biradicals have been tested as a prototype for AWG (Arbitrary Wave Generator)-based spin manipulation techniques, which enable GRAPE (GRAdient Pulse Engineering) microwave control of spins in molecular magnetic resonance spectroscopy for use in molecular spin quantum computers, demonstrating efficient signal enhancement of specific weakened hyperfine signals. Dynamic nuclear polarization (DNP) effects of the biradicals for 400 MHz nuclear magnetic resonance signal enhancement have been examined, giving efficiency factors of 30 for 1H and 27.8 for 13C nuclei. The marked DNP results show the feasibility of these biradicals for hyperpolarization.

18.
Chemistry ; 24(56): 14906-14910, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040151

RESUMO

Reversible solution π-dimerization is observed in the stable neutral phenoxyl radical 2,6-bis-(8-quinolylamino)-4-(tert-butyl)phenoxyl baqp and is spectroscopically characterized. This behavior, not previously observed for π-extended phenoxyl radicals, is relevant to the formation of long multicenter bonding in the π-dimer at low temperature akin to previously reported phenalenyl radicals. Our experimental data are supported in a quantitative manner by results from density functional theory (DFT) and ab initio molecular orbital theory calculations. Our theoretical results indicate that the solution dimer features strong bonding interactions between the two phenoxyl rings but that the stability of the dimer is also related to dispersion interactions between the flanking nearly parallel quinolyl rings.

19.
J Am Chem Soc ; 139(43): 15284-15287, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28965389

RESUMO

Mesityl derivatives of the unknown dibenzopentalene isomer dibenzo[a,f]pentalene were synthesized. The molecular geometry and physical properties of dibenzo[a,f]pentalene were investigated. Dibenzo[a,f]pentalene combines a large antiaromatic and appreciable singlet open-shell character, properties not shared by well-known isomer dibenzo[a,e]pentalene.

20.
Chemistry ; 23(63): 16014-16025, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28868641

RESUMO

Three structural isomers of trioxytriphenylamine (TOT) dimers, 4,4'''-bis(2,2':6',2":6",6-trioxytriphenylamine) (4), 3,3'''-bis(2,2':6',2":6",6-trioxytriphenylamine) (5), and 3,4'''-bis(2,2':6',2":6",6-trioxytriphenylamine) (6), have been prepared and their electronic and magnetic properties in their di(radical cationic) states have been investigated. These di(radical cationic) species can be handled under ambient conditions because of their high stability under aerated conditions even in solution. The X-ray crystal structure analysis demonstrated that the TOT moieties of all the di(radical cation)s have planar structures similar to that of the parent TOT radical cation 3+ . The UV/Vis spectra of the di(radical cation)s show characteristic absorptions depending on the connecting pattern. Thus, in the long-wavelength region (600-900 nm), 42+ exhibits strong and broad characteristic absorptions, whereas compounds 52+ and 62+ exhibit weak absorptions. Notably, in the 450-600 nm region, 52+ displays very similar absorptions (with twice the intensity) to 3+ , whereas small differences were observed for 62+ . Finally, we investigated in detail the magnetic properties of the corresponding di(radical cation)s by electron spin resonance spectroscopy and magnetic susceptibility measurements, which indicated intramolecular exchange interactions with a singlet ground state and a large singlet-triplet (S-T) gap for 42+ , a singlet ground state and a small S-T gap for 52+ , and a triplet ground state for 62+ .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA