RESUMO
Despite decades of influenza surveillance in many African countries, little is known about the evolutionary dynamics of seasonal influenza viruses. This study aimed to characterize the epidemiological, genetic and antigenic profiles of A/H3N2 viruses in Senegal from 2010 to 2022. A/H3N2 infection was confirmed using reverse transcription-polymerase chain reaction. Subsequently, a representative of A/H3N2 isolates was selected for genome sequencing. Predicted vaccine efficacy was measured using the Pepitope model. During the study period, 22638 samples were tested and influenza was detected in 31.8%, among which type A was confirmed in 78.1%. Of the Influenza A cases, the H3N2 subtype was detected in 29.8%, peaking at expected times during the rainy season. Genome sequencing of 123A/H3N2 isolates yielded 24 complete and 99 partial genomic sequences. Phylogenetic analysis revealed the circulation of multiple clades of A/H3N2 in Senegal, including 2a.3, 3C.2 and 3C.3a. A/H3N2 isolates were mainly susceptible to the influenza antiviral drugs oseltamivir and zanamivir, but the primary adamantine-resistance marker, S31N was encountered in all isolates. At least nine potential N-linked glycosylation sites were predicted among A/H3N2 strains, six of which (at positions 24, 38, 79, 181, 262 and 301) remains conserved among all isolates. Antigenic distances between circulating strains and vaccine viruses indicated varying vaccine efficacies, from suboptimal to moderate protection. The findings emphasize the need to enhance local genomic and antigenic surveillance and further research on influenza epidemiology and genetic evolution in sub-Saharan Africa.
Assuntos
Antígenos Virais , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Filogenia , Senegal/epidemiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/classificação , Adulto , Antígenos Virais/genética , Antígenos Virais/imunologia , Adulto Jovem , Pré-Escolar , Feminino , Pessoa de Meia-Idade , Adolescente , Masculino , Criança , Idoso , Antivirais/uso terapêutico , Lactente , Vacinas contra Influenza/imunologia , Monitoramento Epidemiológico , Genoma Viral , Estações do Ano , Farmacorresistência Viral/genética , Eficácia de Vacinas , Evolução Molecular , Idoso de 80 Anos ou maisRESUMO
Historically low levels of seasonal influenza circulation were reported during the first years of the COVID-19 pandemic and were mainly attributed to implementation of nonpharmaceutical interventions. In tropical regions, influenza's seasonality differs largely, and data on this topic are scarce. We analyzed data from Senegal's sentinel syndromic surveillance network before and after the start of the COVID-19 pandemic to assess changes in influenza circulation. We found that influenza shows year-round circulation in Senegal and has 2 distinct epidemic peaks: during January-March and during the rainy season in August-October. During 2021-2022, the expected January-March influenza peak completely disappeared, corresponding to periods of active SARS-CoV-2 circulation. We noted an unexpected influenza epidemic peak during May-July 2022. The observed reciprocal circulation of SARS-CoV-2 and influenza suggests that factors such as viral interference might be at play and should be further investigated in tropical settings.
Assuntos
COVID-19 , Influenza Humana , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Senegal/epidemiologia , Influenza Humana/epidemiologia , PandemiasRESUMO
Yellow fever (YF) virus is a mosquito-borne virus belonging to the Flaviviridae family that circulates in tropical and subtropical areas of Africa and South America. Despite the availability of an effective vaccine, YF remains a threat to travelers, residents of endemic areas, and unvaccinated populations. YF vaccination and natural infection both induce the production of neutralizing antibodies. Serological diagnostic methods detecting YF virus-specific antibodies demonstrate high levels of cross-reactivities with other flaviviruses. To date, the plaque reduction neutralization test (PRNT) is the most specific serological test for the differentiation of flavivirus infections and is considered the reference method for detecting YF neutralizing antibodies and assessing the protective immune response following vaccination. In this study, we developed and validated a YF PRNT. We optimized different parameters including cell concentration and virus-serum neutralization time period and then assessed the intra- and inter-assay precisions, dilutability, specificity, and lower limit of quantification (LLOQ) using international standard YF serum, sera from vaccinees and human specimens collected through YF surveillance. The YF PRNT has shown good robustness and 100% of intra-assay precision, 95.6% of inter-assay precision, 100% of specificity, 100% of LLOQ, and 95.3% of dilutability. The test is, therefore, suitable for use in the YF diagnostic as well as evaluation of the YF vaccine neutralizing antibody response and risk assessment studies.
Assuntos
Vacinas , Vacina contra Febre Amarela , Febre Amarela , Humanos , Febre Amarela/diagnóstico , Febre Amarela/prevenção & controle , Testes de Neutralização , Vírus da Febre Amarela , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
BACKGROUND: A detailed understanding of the contribution of the asymptomatic Plasmodium reservoir to the occurrence of clinical malaria at individual and community levels is needed to guide effective elimination interventions. This study investigated the relationship between asymptomatic Plasmodium falciparum carriage and subsequent clinical malaria episodes in the Dielmo and Ndiop villages in Senegal. METHODS: The study used a total of 2792 venous and capillary blood samples obtained from asymptomatic individuals and clinical malaria datasets collected from 2013 to 2016. Mapping, spatial clustering of infections, and risk analysis were performed using georeferenced households. RESULTS: High incidences of clinical malaria episodes were observed to occur predominantly in households of asymptomatic P falciparum carriers. A statistically significant association was found between asymptomatic carriage in a household and subsequent episode of clinical malaria occurring in that household for each individual year (P values were 0.0017, 6 × 10-5, 0.005, and 0.008 for the years 2013, 2014, 2015, and 2016 respectively) and the combined years (P = 8.5 × 10-8), which was not found at the individual level. In both villages, no significant patterns of spatial clustering of P falciparum clinical cases were found, but there was a higher risk of clinical episodes <25 m from asymptomatic individuals in Ndiop attributable to clustering within households. CONCLUSION: The findings provide strong epidemiological evidence linking the asymptomatic P falciparum reservoir to clinical malaria episodes at household scale in Dielmo and Ndiop villagers. This argues for a likely success of a mass testing and treatment intervention to move towards the elimination of malaria in the villages of Dielmo and Ndiop.
Assuntos
Malária Falciparum , Malária , Plasmodium , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , PrevalênciaRESUMO
BACKGROUND: Influenza is a major cause of morbidity and mortality in Africa. However, a lack of epidemiological data remains for this pathology, and the performances of the influenza-like illness (ILI) case definitions used for sentinel surveillance have never been evaluated in Senegal. This study aimed to i) assess the performance of three different ILI case definitions, adopted by the WHO, USA-CDC (CDC) and European-CDC (ECDC) and ii) identify clinical factors associated with a positive diagnosis for Influenza in order to develop an algorithm fitted for the Senegalese context. METHODS: All 657 patients with a febrile pathological episode (FPE) between January 2013 and December 2016 were followed in a cohort study in two rural villages in Senegal, accounting for 1653 FPE observations with nasopharyngeal sampling and influenza virus screening by rRT-PCR. For each FPE, general characteristics and clinical signs presented by patients were collected. Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV) for the three ILI case definitions were assessed using PCR result as the reference test. Associations between clinical signs and influenza infection were analyzed using logistic regression with generalized estimating equations. Sore throat, arthralgia or myalgia were missing for children under 5 years. RESULTS: WHO, CDC and ECDC case definitions had similar sensitivity (81.0%; 95%CI: 77.0-85.0) and NPV (91.0%; 95%CI: 89.0-93.1) while the WHO and CDC ILI case definitions had the highest specificity (52.0%; 95%CI: 49.1-54.5) and PPV (32.0%; 95%CI: 30.0-35.0). These performances varied by age groups. In children < 5 years, the significant predictors of influenza virus infection were cough and nasal discharge. In patients from 5 years, cough, nasal discharge, sore throat and asthenia grade 3 best predicted influenza infection. The addition of "nasal discharge" as a symptom to the WHO case definition decreased sensitivity but increased specificity, particularly in the pediatric population. CONCLUSION: In summary, all three definitions studies (WHO, ECDC & CDC) have similar performance, even by age group. The revised WHO ILI definition could be chosen for surveillance purposes for its simplicity. Symptomatic predictors of influenza virus infection vary according the age group.
Assuntos
Influenza Humana/epidemiologia , Influenza Humana/etiologia , Adolescente , Adulto , Centers for Disease Control and Prevention, U.S. , Criança , Pré-Escolar , Estudos de Coortes , Tosse/etiologia , Tosse/virologia , Feminino , Febre/etiologia , Febre/virologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Faringite/complicações , População Rural/estatística & dados numéricos , Senegal/epidemiologia , Vigilância de Evento Sentinela , Estados Unidos , Organização Mundial da Saúde , Adulto JovemRESUMO
Reliable serologic tests are needed for diagnosis and surveillance of Zika virus infection. We evaluated the Euroimmun and Dia.Pro serologic tests for detection of Zika virus IgM and IgG by using a panel of 199 samples from a region endemic for flaviviruses. Kinetics of Zika virus antibodies were monitored from 300 sequential specimens sampled over a period of 10 months after infection. We observed suboptimal performance; sensitivity for Zika virus IgM was low, especially in the Euroimmun assay (49%), whereas IgM could be detected for months with the Dia.pro assay. The specificity of the Zika virus IgG assays was also low, especially that of Dia.Pro (62%); findings were strongly influenced by the epidemiologic context. These results highlight the complexity of serologic diagnosis of Zika virus infection in regions endemic for flaviviruses. Accurate analysis of the performance of assays is required to adapt and interpret algorithms.
Assuntos
Kit de Reagentes para Diagnóstico , Testes Sorológicos , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Zika virus/classificação , Adolescente , Adulto , Idoso , Anticorpos Antivirais/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Kit de Reagentes para Diagnóstico/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Testes Sorológicos/normas , Fatores de Tempo , Adulto Jovem , Zika virus/imunologia , Infecção por Zika virus/imunologiaRESUMO
Dramatic changes in transmission intensity can impact Plasmodium population diversity. Using samples from 2 distant time-points in the Dielmo/Ndiop longitudinal cohorts from Senegal, we applied a molecular barcode tool to detect changes in parasite genotypes and complexity of infection that corresponded to changes in transmission intensity. We observed a striking statistically significant difference in genetic diversity between the 2 parasite populations. Furthermore, we identified a genotype in Dielmo and Ndiop previously observed in Thiès, potentially implicating imported malaria. This genetic surveillance study validates the molecular barcode as a tool to assess parasite population diversity changes and track parasite genotypes.
Assuntos
Genética Populacional , Genótipo , Malária/parasitologia , Plasmodium/classificação , Plasmodium/genética , Adolescente , Adulto , Criança , Pré-Escolar , Código de Barras de DNA Taxonômico , Feminino , Genoma de Protozoário , Humanos , Lactente , Estudos Longitudinais , Masculino , Plasmodium/isolamento & purificação , Senegal , Adulto JovemRESUMO
An urban epidemic of dengue in Senegal during 2009 affected 196 persons and included 5 cases of dengue hemorrhagic fever and 1 fatal case of dengue shock syndrome. Dengue virus serotype 3 was identified from all patients, and Aedes aegypti mosquitoes were identified as the primary vector of the virus.
Assuntos
Vírus da Dengue/classificação , Dengue/epidemiologia , População Urbana , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Dengue/história , Vírus da Dengue/genética , Feminino , História do Século XXI , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , Senegal/epidemiologia , Sorotipagem , Dengue Grave/epidemiologia , Dengue Grave/história , Adulto JovemRESUMO
BACKGROUND: The influence of environmental and climatic factors on malaria vector bionomics and transmission is an important topic in the context of climatic change particularly at macro-geographical level. Sahelian areas could be particularly affected due to heterogeneous features including high inter-annual variability in rainfall and others associated parameters. Therefore, baseline information on the impact of environmental and climatic factors on malaria transmission at micro-geographical level is required for vector risk management and implementation of control strategies. METHODS: Malaria vectors were collected indoors by pyrethrum spray catches in 14 villages belonging to 4 different landscape classes (wooded savanna, shrubby savanna, bare soils and steppe) in the sylvo-pastoral area of Senegal. Plasmodium falciparum infection rates were determined using an indirect enzyme-linked immunosorbent assay (ELISA). RESULTS: An. arabiensis was the predominant species in all landscape classes and was the only species collected at the end of the rainy season excepted in villages located in bare soils where it cohabited with An. coluzzii. Mean temperature and relative humidity showed similar variations in all the landscape classes covered whereas rainfall was more heterogeneous in terms of pattern, frequency and amount. The mean densities of An. arabiensis displayed high seasonal differences with peaks observed in August or September. A positive non-significant correlation was observed between An. arabiensis densities for rainfall and humidity whereas a negative non-significant correlation was reported for temperature. Plasmodium falciparum-infected mosquitoes were detected only in wooded savanna and bare soils villages. CONCLUSIONS: These observations suggest key roles played by landscape classes and rainfall in malaria vector densities, infection rates and malaria transmission that could be more pronounced in villages situated in wooded savanna and bare soils. Due to the close relationship between environmental and meteorological parameters in this Sahelian region, additional studies on the impact of these parameters are required to further ascertain their association with entomological parameters involved in malaria transmission. From the public health point of view, such information could be useful for human population settlements as well as for monitoring and modelling purposes giving early warning system for implementation of interventions in these unstable transmission zones.
Assuntos
Anopheles/parasitologia , Clima , Insetos Vetores/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/isolamento & purificação , Estações do Ano , Animais , Entomologia , Ensaio de Imunoadsorção Enzimática , Humanos , Umidade , Chuva , SenegalRESUMO
Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.
RESUMO
Background: Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods: Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings: We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1-3 years, and six children (5.4%) each year at age 4-6 years. Interpretation: Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding: The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding.
RESUMO
This work addresses the problem of supervised classification for highly correlated high-dimensional data describing non-independent observations to identify SNPs related to a phenotype. We use a general penalized linear mixed model with a single random effect that performs simultaneous SNP selection and population structure adjustment in high-dimensional prediction models. Specifically, the model simultaneously selects variables and estimates their effects, taking into account correlations between individuals. Single nucleotide polymorphisms (SNPs) are a type of genetic variation and each SNP represents a difference in a single DNA building block, namely a nucleotide. Previous research has shown that SNPs can be used to identify the correct source population of an individual and can act in isolation or simultaneously to impact a phenotype. In this regard, the study of the contribution of genetics in infectious disease phenotypes is of great importance. In this study, we used uncorrelated variables from the construction of blocks of correlated variables done in a previous work to describe the most related observations of the dataset. The model was trained with 90% of the observations and tested with the remaining 10%. The best model obtained with the generalized information criterion (GIC) identified the SNP named rs2493311 located on the first chromosome of the gene called PRDM16 ((PR/SET domain 16)) as the most decisive factor in malaria attacks.
RESUMO
Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.
RESUMO
Objectives: Rift Valley Fever and Crimean-Congo Hemorrhagic Fever are two infections classified among the emerging diseases to be monitored with highest priority. Studies undertaken in human and animals have shown endemicity of these two arboviruses in several African countries. However, most of the investigations were carried out on domestic cattle and the studies conducted on human populations are either outdated or limited to a small number of well-known endemic areas. It is then critical to better evaluate the burden of these viruses in Senegal at a national scale. Methods: This work relies on a previous seroprevalence survey undertaken in all regions of Senegal at the end of 2020. The existing biobank was used to determine the immunoglobulin G [IgG] Rift Valley Fever and Crimean-Congo Hemorrhagic Fever seroprevalences by indirect enzyme-linked immunosorbent assay. Results: The crude seroprevalences of Rift Valley Fever and Crimean-Congo Hemorrhagic Fever were 3.94% and 0.7% respectively, with the northern and central part of the countries as the main exposed areas. However, acute infections reported in both high and low exposed regions suggest sporadic introductions. Conclusions: This study gives updated information and could be of interest to support the stakeholders in the management of these zoonoses.
RESUMO
During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Busca de Comunicante , Pandemias , Senegal/epidemiologiaRESUMO
Senegal is hyperendemic for dengue. Since 2017, outbreaks have been noticed annually in many regions around the country, marked by the co-circulation of DENV1-3. On 8 October 2021, a Dengue virus outbreak in the Rosso health post (sentinel site of the syndromic surveillance network) located in the north of the country was notified to the WHO Collaborating Center for arboviruses and hemorrhagic fever viruses at Institut Pasteur de Dakar. A multidisciplinary team was then sent for epidemiological and virologic investigations. This study describes the results from investigations during an outbreak in Senegal using a rapid diagnostic test (RDT) for the combined detection of dengue virus non-structural protein 1 (NS1) and IgM/IgG. For confirmation, samples were also tested by real-time RT-PCR and IgM ELISA at the reference lab in Dakar. qRT-PCR positive samples were subjected to whole genome sequencing using nanopore technology. Virologic analysis scored 102 positives cases (RT-PCR, NS1 antigen detection and/or IgM) out of 173 enrolled patients; interestingly, virus serotyping showed that the outbreak was caused by the DENV-1, a serotype different from DENV-2 involved during the outbreak in Rosso three years earlier, indicating a serotype replacement. Nearly all field-tested NS1 positives samples were confirmed by qRT-PCR with a concordance of 92.3%. Whole genome sequencing and phylogenetic analysis of strains suggested a re-introduction in Rosso of a DENV-1 strain different to the one responsible for the outbreak in the Louga area five years before. Findings call for improved dengue virus surveillance in Senegal, with a wide deployment of DENV antigenic tests, which allow easy on-site diagnosis of suspected cases and early detection of outbreaks. This work highlights the need for continuous monitoring of circulating serotypes which is crucial for a better understanding of viral epidemiology around the country.
RESUMO
BACKGROUND: When vaccines against the novel COVID-19 were available in Senegal, many questions were raised. How long should non-pharmaceutical interventions (NPIs) be maintained during vaccination roll-out? What are the best vaccination strategies? METHODS: In this study, we used an age-structured dynamic mathematical model. This model uses parameters based on SARS-CoV-2 virus, information on different types of NPIs, epidemiological and demographic data, some parameters relating to hospitalisations and vaccination in Senegal. RESULTS: In all scenarios explored, the model predicts a larger third epidemic wave of COVID-19 in terms of new cases and deaths than the previous waves. In a context of limited vaccine supply, vaccination alone will not be sufficient to control the epidemic, and the continuation of NPIs is necessary to flatten the epidemic curve. Assuming 20% of the population have been vaccinated, the optimal period to relax NPIs would be a few days from the last peak. Regarding the prioritisation of age groups to be vaccinated, the model shows that it is better to vaccinate individuals aged 5-60 years and not just the elderly (over 60 years) and those in high-risk groups. This strategy could be more cost-effective for the government, as it would reduce the high costs associated with hospitalisation. In terms of vaccine distribution, the optimal strategy would be to allocate full dose to the elderly. If vaccine doses are limited, half dose followed by full dose would be sufficient for people under 40 years because whether they receive half or full dose, the reduction in hospitalisations would be similar and their death-to-case ratio is very low. CONCLUSIONS: This study could be presented as a decision support tool to help devise strategies to control the COVID-19 pandemic and help the Ministry of Health to better manage and allocate the available vaccine doses.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Senegal/epidemiologia , Vacinação , Adulto JovemRESUMO
Objectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal. Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays. Adjusted prevalence rates for the survey design were calculated for each test separately, and thereafter combined. Crude and adjusted prevalence rates based on test performance were estimated to assess the seroprevalence. As some samples were collected in high malaria endemic areas, the relationship between SARS-CoV-2 seroreactivity and antimalarial humoral immunity was also investigated. Results: Of the 1463 participants included in this study, 58.8% were female and 41.2% were male; their mean age was 29.2 years (range 0.20-84.8.0 years). The national seroprevalence was estimated at 28.4% (95% confidence interval 26.1-30.8%). There was substantial regional variability. All age groups were impacted, and the prevalence of SARS-CoV-2 was comparable in the symptomatic and asymptomatic groups. An estimated 4 744 392 (95% confidence interval 4 360 164-5 145 327) were potentially infected with SARS-CoV-2 in Senegal, while 16 089 COVID-19 RT-PCR laboratory-confirmed cases were reported by the national surveillance. No correlation was found between SARS-CoV-2 and Plasmodium seroreactivity. Conclusions: These results provide a better estimate of SARS-CoV-2 dissemination in the Senegalese population. Preventive and control measures need to be reinforced in the country and especially in the south border regions.
RESUMO
BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal. METHODS: Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated. RESULTS: 67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159-1.162), the growth rate was 0.031 (95%CI: 0.028-0.034) per day. CONCLUSIONS: Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.