Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genome Res ; 31(7): 1280-1289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34140313

RESUMO

Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.

2.
Proc Natl Acad Sci U S A ; 112(14): 4316-21, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831492

RESUMO

Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.


Assuntos
5-Metilcitosina/química , Naegleria/enzimologia , Oxigenases/química , Proteínas de Protozoários/química , Algoritmos , Animais , Citosina/química , DNA/química , Proteínas de Ligação a DNA/química , Epigênese Genética , Epigenômica , Humanos , Camundongos , Oxigenases de Função Mista/química , Mutação , Oxigênio/química , Filogenia , Proteínas Proto-Oncogênicas/química , Análise de Sequência de DNA , Timidina/química
3.
J Am Chem Soc ; 138(30): 9345-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27362828

RESUMO

The ten-eleven translocation (TET) proteins catalyze oxidation of 5-methylcytosine ((5m)C) residues in nucleic acids to 5-hydroxymethylcytosine ((5hm)C), 5-formylcytosine ((5f)C), and 5-carboxycytosine ((5ca)C). These nucleotide bases have been implicated as intermediates on the path to active demethylation, but recent reports have suggested that they might have specific regulatory roles in their own right. In this study, we present kinetic evidence showing that the catalytic domains (CDs) of TET2 and TET1 from mouse and their homologue from Naegleria gruberi, the full-length protein NgTET1, are distributive in both chemical and physical senses, as they carry out successive oxidations of a single (5m)C and multiple (5m)C residues along a polymethylated DNA substrate. We present data showing that the enzyme neither retains (5hm)C/(5f)C intermediates of preceding oxidations nor slides along a DNA substrate (without releasing it) to process an adjacent (5m)C residue. These findings contradict a recent report by Crawford et al. ( J. Am. Chem. Soc. 2016 , 138 , 730 ) claiming that oxidation of (5m)C by CD of mouse TET2 is chemically processive (iterative). We further elaborate that this distributive mechanism is maintained for TETs in two evolutionarily distant homologues and posit that this mode of function allows the introduction of (5m)C forms as epigenetic markers along the DNA.


Assuntos
5-Metilcitosina/metabolismo , Domínio Catalítico , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/química , Dioxigenases , Camundongos , Naegleria/enzimologia , Oxirredução , Proteínas Proto-Oncogênicas/química
4.
J Am Chem Soc ; 138(28): 8862-74, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27193226

RESUMO

The enzyme isopenicillin N synthase (IPNS) installs the ß-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the ß-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,ß-H bond for closure of the ß-lactam ring, and the CVal,ß-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work.


Assuntos
Aspergillus nidulans/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Cinética , Oxigênio/metabolismo , Teoria Quântica , Análise Espectral
5.
PLoS One ; 17(3): e0259610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324900

RESUMO

The ongoing SARS-CoV-2 pandemic has necessitated a dramatic increase in our ability to conduct molecular diagnostic tests, as accurate detection of the virus is critical in preventing its spread. However, SARS-CoV-2 variants continue to emerge, with each new variant potentially affecting widely-used nucleic acid amplification diagnostic tests. RT-LAMP has been adopted as a quick, inexpensive diagnostic alternative to RT-qPCR, but as a newer method, has not been studied as thoroughly. Here we interrogate the effect of SARS-CoV-2 sequence mutations on RT-LAMP amplification, creating 523 single point mutation "variants" covering every position of the LAMP primers in 3 SARS-CoV-2 assays and analyzing their effects with over 4,500 RT-LAMP reactions. Remarkably, we observed only minimal effects on amplification speed and no effect on detection sensitivity at positions equivalent to those that significantly impact RT-qPCR assays. We also created primer sets targeting a specific short deletion and observed that LAMP is able to amplify even with a primer containing multiple consecutive mismatched bases, albeit with reduced speed and sensitivity. This highlights RT-LAMP as a robust technique for viral RNA detection that can tolerate most mutations in the primer regions. Additionally, where variant discrimination is desired, we describe the use of molecular beacons to sensitively distinguish and identify variant RNA sequences carrying short deletions. Together these data add to the growing body of knowledge on the utility of RT-LAMP and increase its potential to further our ability to conduct molecular diagnostic tests outside of the traditional clinical laboratory environment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
Commun Biol ; 5(1): 999, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130997

RESUMO

Detection of nucleic acid amplification has typically required sophisticated laboratory instrumentation, but as the amplification techniques have moved away from the lab, complementary detection techniques have been implemented to facilitate point-of-care, field, and even at-home applications. Simple visual detection approaches have been widely used for isothermal amplification methods, but have generally displayed weak color changes or been highly sensitive to sample and atmospheric effects. Here we describe the use of pyridylazophenol dyes and binding to manganese ion to produce a strong visible color that changes in response to nucleic acid amplification. This detection approach is easily quantitated with absorbance, rapidly and clearly visible by eye, robust to sample effects, and notably compatible with both isothermal and PCR amplification. Nucleic acid amplification and molecular diagnostic methods are being used in an increasing number of novel applications and settings, and the ability to reliably and sensitively detect them without the need for additional instrumentation will enable even more access to these powerful techniques.


Assuntos
Corantes , Ácidos Nucleicos , DNA/análise , DNA/genética , Manganês , Metais , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Front Mol Biosci ; 8: 670940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996915

RESUMO

Prokaryotic Argonautes (pAgo) are an increasingly well-studied class of guided endonucleases, and the underlying mechanisms by which pAgo generate nucleic acid guides in vivo remains an important topic of investigation. Recent insights into these mechanisms for the Argonaute protein from Thermus thermophilus has drawn attention to global sequence and structural feature preferences involved in oligonucleotide guide selection. In this work, we approach the study of guide sequence preferences in T. thermophilus Argonaute from a functional perspective. Screening a library of 1,968 guides against randomized single- and double-stranded DNA substrates, endonuclease activity associated with each guide was quantified using high-throughput capillary electrophoresis, and localized sequence preferences were identified which can be used to improve guide design for molecular applications. The most notable preferences include: a strong cleavage enhancement from a first position dT independent of target sequence; a significant decrease in activity with dA at position 12; and an impact of GC dinucleotides at positions 10 and 11. While this method has been useful in characterizing unique preferences of T. thermophilus Argonaute and criteria for creating efficient guides, it could be expanded further to rapidly characterize more recent mesophilic variants reported in the literature and drive their utility toward molecular tools in biology and genome editing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA