Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Cerebrovasc Dis ; 51(4): 461-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983048

RESUMO

INTRODUCTION: Stroke is characterized by deleterious oxidative stress. Selenoprotein enzymes are essential endogenous antioxidants, and detailed insight into their role after stroke could define new therapeutic treatments. This systematic review aimed to elucidate how blood selenoprotein concentration and activity change in the acute phase of stroke. METHODS: We searched PubMed, EMBASE, and Medline databases for studies measuring serial blood selenoprotein concentration or activity in acute stroke patients or in stroke patients compared to non-stroke controls. Meta-analyses of studies stratified by the type of stroke, blood compartment, and type of selenoprotein measurement were conducted. RESULTS: Eighteen studies and data from 941 stroke patients and 708 non-stroke controls were included in this review. Glutathione peroxidase (GPx) was the only identified selenoprotein, and its activity was most frequently measured. Results from 12 studies and 693 patients showed that compared to non-stroke controls in acute ischaemic stroke patients, the GPx activity increased in haemolysate (standardized mean difference [SMD]: 0.27, 95% CI: 0.07-0.47) but decreased in plasma (mean difference [MD]: -1.08 U/L, 95% CI: -1.94 to -0.22) and serum (SMD: -0.54, 95% CI: -0.91 to -0.17). From 4 identified studies in 106 acute haemorrhagic stroke patients, the GPx activity decreased in haemolysate (SMD: -0.40, 95% CI: -0.68 to -0.13) and remained unchanged in plasma (MD: -0.10 U/L, 95% CI: -0.81 to 0.61) and serum (MD: -5.00 U/mL, 95% CI: -36.17 to 26.17) compared to non-stroke controls. Results from studies assessing the GPx activity in the haemolysate compartment were inconsistent and characterized by high heterogeneity. CONCLUSIONS: Our results suggest a reduction of the blood GPx activity in acute ischaemic stroke patients, a lack of evidence regarding a role for GPx in haemorrhagic stroke patients, and insufficient evidence for other selenoproteins.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Selenoproteínas , Antioxidantes , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patologia , Glutationa Peroxidase , Acidente Vascular Cerebral Hemorrágico/diagnóstico , Acidente Vascular Cerebral Hemorrágico/patologia , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/patologia , Selênio , Selenoproteínas/metabolismo
2.
Stem Cell Res Ther ; 11(1): 32, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964413

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold great potential as a therapy for stroke and have previously been shown to promote recovery in preclinical models of cerebral ischaemia. MSCs secrete a wide range of growth factors, chemokines, cytokines and extracellular vesicles-collectively termed the secretome. In this study, we assessed for the first time the efficacy of the IL-1α-primed MSC-derived secretome on brain injury and functional recovery after cerebral ischaemia. METHODS: Stroke was induced in male C57BL/6 mice using the intraluminal filament model of middle cerebral artery occlusion. Conditioned medium from IL-1α-primed MSCs or vehicle was administered at the time of reperfusion or at 24 h post-stroke by subcutaneous injection. RESULTS: IL-1α-primed MSC-derived conditioned medium treatment at the time of stroke led to a ~ 30% reduction in lesion volume at 48 h and was associated with modest improvements in body mass gain, 28-point neurological score and nest building. Administration of MSC-derived conditioned medium at 24 h post-stroke led to improved nest building and neurological score despite no observed differences in lesion volume at day 2 post-stroke. CONCLUSIONS: Our results show for the first time that the administration of conditioned medium from IL-1α-primed MSCs leads to improvements in behavioural outcomes independently of neuroprotection.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Meios de Cultivo Condicionados/química , Interleucina-1/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA