Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0267389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486650

RESUMO

Next-generation sequencing of circulating tumor DNA presents a promising approach to cancer diagnostics, complementing conventional tissue-based diagnostic testing by enabling minimally invasive serial testing and broad genomic coverage through a simple blood draw to maximize therapeutic benefit to patients. LiquidHALLMARK® is an amplicon-based next-generation sequencing assay developed for the genomic profiling of plasma-derived cell-free DNA (cfDNA). The comprehensive 80-gene panel profiles point mutations, insertions/deletions, copy number alterations, and gene fusions, and further detects oncogenic viruses (Epstein-Barr virus (EBV) and hepatitis B virus (HBV)) and microsatellite instability (MSI). Here, the analytical and clinical validation of the assay is reported. Analytical validation using reference genetic materials demonstrated a sensitivity of 99.38% for point mutations and 95.83% for insertions/deletions at 0.1% variant allele frequency (VAF), and a sensitivity of 91.67% for gene fusions at 0.5% VAF. In non-cancer samples, a high specificity (≥99.9999% per-base) was observed. The limit of detection for copy number alterations, EBV, HBV, and MSI were also empirically determined. Orthogonal comparison of epidermal growth factor receptor (EGFR) variant calls made by LiquidHALLMARK and a reference allele-specific polymerase chain reaction (AS-PCR) method for 355 lung cancer specimens revealed an overall concordance of 93.80%, while external validation with cobas® EGFR Mutation Test v2 for 50 lung cancer specimens demonstrated an overall concordance of 84.00%, with a 100% concordance rate for EGFR variants above 0.4% VAF. Clinical application of LiquidHALLMARK in 1,592 consecutive patients demonstrated a high detection rate (74.8% circulating tumor DNA (ctDNA)-positive in cancer samples) and broad actionability (50.0% of cancer samples harboring alterations with biological evidence for actionability). Among ctDNA-positive lung cancers, 72.5% harbored at least one biomarker with a guideline-approved drug indication. These results establish the high sensitivity, specificity, accuracy, and precision of the LiquidHALLMARK assay and supports its clinical application for blood-based genomic testing.


Assuntos
DNA Tumoral Circulante , Infecções por Vírus Epstein-Barr , Neoplasias Pulmonares , DNA Tumoral Circulante/genética , Receptores ErbB/genética , Herpesvirus Humano 4/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
2.
Front Microbiol ; 8: 72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197135

RESUMO

The process of intercellular communication among bacteria, termed quorum sensing (QS), is mediated by small diffusible molecules known as the autoinducers. QS allows the population to react to the change of cell density in unison, in processes such as biofilm formation, plasmid conjugation, virulence, motility and root nodulation. In Gram-negative proteobacteria, N-acyl homoserine lactone (AHL) is the common "language" to coordinate gene expression. This signaling molecule is usually synthesized by LuxI-type proteins. We have previously discovered that a rare bacterium, Cedecea neteri, exhibits AHL-type QS activity. With information generated from genome sequencing, we have identified the luxIR gene pair responsible for AHL-type QS and named it cneIR. In this study, we have cloned and expressed the 636 bp luxI homolog in an Escherichia coli host for further characterization. Our findings show that E. coli harboring cneI produced the same AHL profile as the wild type C. neteri, with the synthesis of AHL known as N-butyryl-homoserine lactone. This 25 kDa LuxI homolog shares high similarity with other AHL synthases from closely related species. This work is the first documentation of molecular cloning and characterization of luxI homolog from C. neteri.

3.
PeerJ ; 3: e1216, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355540

RESUMO

Cedecea neteri is a very rare human pathogen. We have isolated a strain of C. neteri SSMD04 from pickled mackerel sashimi identified using molecular and phenotypics approaches. Using the biosensor Chromobacterium violaceum CV026, we have demonstrated the presence of short chain N-acyl-homoserine lactone (AHL) type quorum sensing (QS) activity in C. neteri SSMD04. Triple quadrupole LC/MS analysis revealed that C. neteri SSMD04 produced short chain N-butyryl-homoserine lactone (C4-HSL). With the available genome information of C. neteri SSMD04, we went on to analyse and identified a pair of luxI/R homologues in this genome that share the highest similarity with croI/R homologues from Citrobacter rodentium. The AHL synthase, which we named cneI(636 bp), was found in the genome sequences of C. neteri SSMD04. At a distance of 8bp from cneI is a sequence encoding a hypothetical protein, potentially the cognate receptor, a luxR homologue which we named it as cneR. Analysis of this protein amino acid sequence reveals two signature domains, the autoinducer-binding domain and the C-terminal effector which is typical characteristic of luxR. In addition, we found that this genome harboured an orphan luxR that is most closely related to easR in Enterobacter asburiae. To our knowledge, this is the first report on the AHL production activity in C. neteri, and the discovery of its luxI/R homologues, the orphan receptor and its whole genome sequence.

4.
Genome Announc ; 3(2)2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25792063

RESUMO

Dickeya chrysanthemi is well known as a plant pathogen that caused major blackleg in the European potato industry in the 1990s. D. chrysanthemi strain L11 was discovered in a recreational lake in Malaysia. Here, we present its draft genome sequence.

5.
Genome Announc ; 3(1)2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25657288

RESUMO

Dickeya sp. strain 2B12 was isolated from a freshwater lake in Malaysia. Here, we report the draft genome sequence of Dickeya sp. 2B12 sequenced by the Illumina MiSeq platform. With the genome sequence available, this genome sequence will be useful for the study of quorum-sensing activity in this isolate.

6.
PeerJ ; 3: e1367, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587340

RESUMO

Background. Two non-tuberculous mycobacterial strains, UM_3 and UM_11, were isolated from the trunk wash of captive elephants in Malaysia. As they appeared to be identical phenotypes, they were investigated further by conventional and whole genome sequence-based methods of strain differentiation. Methods. Multiphasic investigations on the isolates included species identification with hsp65 PCR-sequencing, conventional biochemical tests, rapid biochemical profiling using API strips and the Biolog Phenotype Microarray analysis, protein profiling with liquid chromatography-mass spectrometry, repetitive sequence-based PCR typing and whole genome sequencing followed by phylogenomic analyses. Results. The isolates were shown to be possibly novel slow-growing schotochromogens with highly similar biological and genotypic characteristics. Both strains have a genome size of 5.2 Mbp, G+C content of 68.8%, one rRNA operon and 52 tRNAs each. They qualified for classification into the same species with their average nucleotide identity of 99.98% and tetranucleotide correlation coefficient of 0.99999. At the subspecies level, both strains showed 98.8% band similarity in the Diversilab automated repetitive sequence-based PCR typing system, 96.2% similarity in protein profiles obtained by liquid chromatography mass spectrometry, and a genomic distance that is close to zero in the phylogenomic tree constructed with conserved orthologs. Detailed epidemiological tracking revealed that the elephants shared a common habitat eight years apart, thus, strengthening the possibility of a clonal relationship between the two strains.

7.
Genome Announc ; 2(6)2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25523782

RESUMO

We report here the complete genome sequence of C. neteri SSMD04, a strain isolated from pickled mackerel sashimi, sequenced by third-generation sequencing technology. To the best of our knowledge, this is the first documentation that reports the complete genome of Cedecea neteri.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA