Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2307845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408735

RESUMO

Contamination tolerance and long-term mechanical support are the two critical properties of meshes for contaminated abdominal wall defect repair. However, biological meshes with excellent pollution tolerance fail to provide bio-adaptive long-term mechanical support due to their rapid degradation. Here, a novel double-layer asymmetric porous mesh (SIS/PVA-EXO) is designed by simple and efficient in situ freeze-thaw of sticky polyvinyl alcohol (PVA) solution on the loosely porous surface of small intestinal submucosal decellularized matrix (SIS), which can successfully repair the contaminated abdominal wall defect with bio-adaptive dynamic mechanical support through only single-stage surgery. The exosome-loaded degradable loosely porous SIS layer accelerates the tissue healing; meanwhile, the exosome-loaded densely porous PVA layer can maintain long-term mechanical support without any abdominal adhesion. In addition, the tensile strength and strain at break of SIS/PVA-EXO mesh change gradually from 0.37 MPa and 210% to 0.10 MPa and 385% with the degradation of SIS layer. This unique performance can dynamically adapt to the variable mechanical demands during different periods of contaminated abdominal wall reconstruction. As a result, this SIS/PVA-EXO mesh shows an attractive prospect in the treatment of contaminated abdominal wall defect without recurrence by integrating local immune regulation, tissue remodeling, and dynamic mechanical supporting.


Assuntos
Parede Abdominal , Álcool de Polivinil , Telas Cirúrgicas , Porosidade , Parede Abdominal/cirurgia , Animais , Álcool de Polivinil/química , Resistência à Tração , Cicatrização , Materiais Biocompatíveis/química
2.
Adv Sci (Weinh) ; 11(21): e2308590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509840

RESUMO

Pelvic organ prolapse (POP) is one of the most common pelvic floor dysfunction disorders worldwide. The weakening of pelvic connective tissues initiated by excessive collagen degradation is a leading cause of POP. However, the patches currently used in the clinic trigger an unfavorable inflammatory response, which often leads to implantation failure and the inability to simultaneously reverse progressive collagen degradation. Therefore, to overcome the present challenges, a new strategy is applied by introducing puerarin (Pue) into poly(l-lactic acid) (PLLA) using electrospinning technology. PLLA improves the mechanical properties of the patch, while Pue offers intrinsic anti-inflammatory and pro-collagen synthesis effects. The results show that Pue is released from PLLA@Pue in a sustained manner for more than 20 days, with a total release rate exceeding 80%. The PLLA@Pue electrospun patches also show good biocompatibility and low cytotoxicity. The excellent anti-inflammatory and pro-collagen synthesis properties of the PLLA@Pue patch are demonstrated both in vitro in H2O2-stimulated mouse fibroblasts and in vivo in rat abdominal wall muscle defects. Therefore, it is believed that this multifunctional electrospun patch integrating anti-inflammatory and pro-collagen synthesis properties can overcome the limitations of traditional patches and has great prospects for efficient pelvic floor reconstruction.


Assuntos
Anti-Inflamatórios , Colágeno , Isoflavonas , Diafragma da Pelve , Prolapso de Órgão Pélvico , Animais , Isoflavonas/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , Camundongos , Prolapso de Órgão Pélvico/cirurgia , Poliésteres/química , Modelos Animais de Doenças , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA