Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 22(1): 110-4, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22169262

RESUMO

We report herein the design and synthesis of novel 4-aminoquinazoline derivatives based on the inhibitors of VEGFR-2 tyrosine kinases. The VEGFR-2 inhibitory activities of these newly synthesized compounds were also evaluated and compared with that of ZD6474. We found that most of target compounds had good inhibitory potency. In particular, compounds 1h, 1n and 1o were found to be 6, 2 and 2-fold more potent than the positive control ZD6474. The leading compound 1h also showed an in vivo activity against HepG2 human tumor xenograft model in BALB/c-nu mice.


Assuntos
Química Farmacêutica/métodos , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Modelos Químicos , Transplante de Neoplasias , Piperidinas/farmacologia , Quinazolinas/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
4.
Chin Herb Med ; 12(1): 67-72, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36117562

RESUMO

Objective: To investigate the therapeutic effect of total iridoid glycosides of Picrorhiza scrophulariiflora (TIGP) on non-alcoholic steatohepatitis (NASH). Methods: SD rats were fed with high-fat and high-sugar diet for 8 weeks to establish NASH. TIGP were given orally at doses of 20, 40 and 80 mg/kg/d for 4 weeks. Triglycerides assay (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), fasting plasma glucose (FPG), fasting insulin (FINS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), chemokine-1 (MCP-1), leptin (LEP) in serum were tested. TG, TC, superoxide dismutase (SOD), malondialdehyde (MDA), and free fatty acid (FFA) in liver tissue were determined by colorimetric methods. Steatosis of hepatocytes and inflammation was performed by pathological examination. Results: The results showed that TIGP significantly decreased TC, TG and FFA in liver tissue, increased SOD activity, decreased MDA content, decreased serum levels of TG, TC, HDL-C/LDL-C, ALT, AST, GLU, HOMA-IR, TNF-α and LEP, and in addition, improved steatosis of liver cells compared to NASH. Conclusion: TIGP had anti-fatty liver effect against NASH rats induced by high-fat and high-sugar diet. Its mechanism was related to the regulation of lipid metabolism and reduction of insulin resistance, through inhibition of oxidative stress and inflammation.

5.
Neurol Res ; 41(11): 1034-1042, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31584350

RESUMO

Objectives: To investigate the thrombolysis with recombinant human prourokinase (rhPro-UK) on thromboembolic stroke in rats at different therapeutic time windows (TTW). Methods: Rats were subjected to embolic middle cerebral artery occlusion. RhPro-UK and positive control drugs rt-PA,UK were administered 3 h, 4.5 h, 6 h after inducing thromboem-bolic stroke. Neurological deficit scoring (NDS) was evaluated at 6 h and 24 h after the treatment. The lesion volume in cerebral hemispheres was measured by MRI scanning machine after 6 h of thrombolysis, and the infarct volume was measured by TTC stain, together with hemorrhagic volume quantified by a spectrophotometric assay after 24 h of thrombolysis. Results: RhPro-UK 10, 20 × 104 U/kg significantly improved the NDS after cerebral thromboembolism in rats at 3 h, 4.5 h TTW, and at the 6 h TTW, the NDS was improved by 28.0% (P = 0.0690) and 29.2% (P = 0.0927) at 6 h and 24 h after rhPro-UK 20 ×104 U/kg administration, respectively. RhPro-UK 10, 20 × 104 U/kg significantly reduced the brain lesions measured by MRI at 3 h and 4.5 h TTW. RhPro-UK 10, 20 × 104 U/kg significantly reduced the cerebral infarction measured by TTC at 3 h, 4.5 h TTW. There was no increase in cerebral hemorrhage compared with untreated group after rhPro-UK administration. Conclusions: RhPro-UK had an obvious therapeutic effect on ischemic stroke caused by thrombosis, and could be started within 4.5 h TTW with less side effects of cerebral hemorrhage than that of UK.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Embolia Intracraniana/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Embolia Intracraniana/complicações , Masculino , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Tromboembolia/complicações , Tromboembolia/tratamento farmacológico , Terapia Trombolítica/métodos , Fatores de Tempo
6.
Eur J Pharmacol ; 818: 429-434, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29154937

RESUMO

We evaluated the efficacy and safety of human recombinant prourokinase ( rhpro-UK) on thromboembolic stroke in rats. 60 rats with thromboembolic stroke were divided into 6 groups (n = 10). The model group was given saline, the reagent groups were given rhpro-UK (5, 10, 20 × 104U/kg), and positive control groups were given urokinase (UK) 10 × 104U/kg and recombinant tissue plasminogen activator (rt-PA) 9mg/kg through intravenous infusion at 1.5h after embolism. And other 10 rats without occluded by autologous blood clots as the sham group were given saline. At 6h after treatment, neurological deficit score and Magnetic Resonance Imaging(MRI) including T1WI and T2WI sequence scanning were measured. At 24h after treatment, the brain was cut for 2,3,5-triphenyltetrazolium chloride (TTC) staining and aspectrophotometric assay to measure the infarct area and intracerebral hemorrhage after neurological deficit detection. rhpro-UK (5, 10, 20 × 104 U/kg) improved neurological disorder by 39.1 ± 19.7% (n = 10, P > 0.05), 65.2 ± 14.2% (n = 10, P < 0.01) and 65.2 ± 14.2% (n = 10, P < 0.01) maximally; decreased brain lesion volume by 36.7 ± 34.8% (n = 10, P < 0.05), 77.6 ± 7.7% (n = 10, P < 0.01) and 80.5 ± 6.9% (n = 10, P < 0.01); decreased infarction area by 38.2 ± 24.0% (n = 10, P < 0.01), 73.9 ± 5.2% (n = 10, P < 0.001) and 79.7 ± 4.0% (n = 10, P < 0.001) respectively, and there were no statistics difference between rhpro-UK (5, 10, 20 × 104 U/kg) and each positive groups at intracerebral hemorrhage (P > 0.05). Rhpro-UK improved the damaged neural function, decreased the extent of the disease and did not raise bleeding, had protective effects for cerebral ischemia in rats.


Assuntos
Precursores Enzimáticos/farmacologia , Proteínas Recombinantes/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/complicações , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Animais , Hemorragia Cerebral/complicações , Precursores Enzimáticos/uso terapêutico , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico
7.
J Med Chem ; 56(18): 7212-21, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23957426

RESUMO

Activating mutations of PTPN11 (encoding the SHP2 phosphatase) are associated with Noonan syndrome, childhood leukemias, and sporadic solid tumors. Virtual screening combined with experimental assays was performed to identify inhibitors of SHP2 from a database of natural products. This effort led to the identification of cryptotanshinone as an inhibitor of SHP2. Cryptotanshinone inhibited SHP2 with an IC50 of 22.50 µM. Fluorescence titration experiments confirmed that it directly bound to SHP2. Enzymatic kinetic analyses showed that cryptotanshinone was a mixed-type and irreversible inhibitor. This drug was further verified for its ability to block SHP2-mediated cell signaling and cellular functions. Furthermore, mouse myeloid progenitors and patient leukemic cells with the activating mutation E76K in PTPN11 were found to be sensitive to this inhibitor. Since cryptotanshinone is used to treat cardiovascular diseases in Asian countries, this drug has a potential to be used directly or to be further developed to treat PTPN11-associated malignancies.


Assuntos
Inibidores Enzimáticos/farmacologia , Fenantrenos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Desenho Assistido por Computador , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
8.
Mol Cancer Ther ; 12(9): 1738-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23825065

RESUMO

Activating mutations in PTPN11 (encoding SHP2), a protein tyrosine phosphatase (PTP) that plays an overall positive role in growth factor and cytokine signaling, are directly associated with the pathogenesis of Noonan syndrome and childhood leukemias. Identification of SHP2-selective inhibitors could lead to the development of new drugs that ultimately serve as treatments for PTPN11-associated diseases. As the catalytic core of SHP2 shares extremely high homology to those of SHP1 and other PTPs that play negative roles in cell signaling, to identify selective inhibitors of SHP2 using computer-aided drug design, we targeted a protein surface pocket that is adjacent to the catalytic site, is predicted to be important for binding to phosphopeptide substrates, and has structural features unique to SHP2. From computationally selected candidate compounds, #220-324 effectively inhibited SHP2 activity with an IC50 of 14 µmol/L. Fluorescence titration experiments confirmed its direct binding to SHP2. This active compound was further verified for its ability to inhibit SHP2-mediated cell signaling and cellular function with minimal off-target effects. Furthermore, mouse myeloid progenitors with the activating mutation (E76K) in PTPN11 and patient leukemic cells with the same mutation were more sensitive to this inhibitor than wild-type cells. This study provides evidence that SHP2 is a "druggable" target for the treatment of PTPN11-associated diseases. As the small-molecule SHP2 inhibitor identified has a simple chemical structure, it represents an ideal lead compound for the development of novel anti-SHP2 drugs. Mol Cancer Ther; 12(9); 1738-48. ©2013 AACR.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Leucemia Mieloide/patologia , Síndrome de Noonan/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Triazinas/farmacologia , Animais , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular , Criança , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Técnicas de Inativação de Genes , Humanos , Indóis/química , Indóis/metabolismo , Leucemia Mieloide/tratamento farmacológico , Camundongos , Estrutura Molecular , Mutação , Síndrome de Noonan/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triazinas/química , Triazinas/metabolismo , Células Tumorais Cultivadas
9.
Protein Pept Lett ; 18(10): 1021-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21592078

RESUMO

PPAR (peroxisome proliferator-activated receptor) pan agonists play a critical role in treating metabolic diseases, especially the Type-2 diabetes mellitus (T2DM). GlaxoSmithKline's sodelglitazar (GW677954) is one of the potent PPAR pan agonists, which is currently being investigated in Phase II clinical trials for the treatment of T2DM and its complications. The present study was aimed at investigation into the effect of sodelglitazar at the binding pockets of PPARs. The Schrodinger Suite program (2009) was used for the molecular docking, while the GROMACS program used for the molecular dynamics (MD) simulations. The results thus obtained showed that sodelglitazar being docked well in the active site of PPARs. It was revealed by the MD simulations that the structures of the receptors remained quite stable during the simulations and that the important AF-2 helix showed less flexibility after binding with sodelglitazar. Also, it was observed that sodelglitazar could periodically form hydrogen bonds with the AF-2 helix of PPARs to stabilize the AF-2 helix in an active conformation. Our findings have confirmed that GlaxoSmithKline's sodelglitazar can activate the PPARs, which is quite consistent with the previous biological studies.


Assuntos
Simulação de Dinâmica Molecular , Receptores Ativados por Proliferador de Peroxissomo/química , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Estrutura Molecular , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA