Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(4): 3741-3751, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666963

RESUMO

The "Indica to Japonica" initiative in China focuses on adapting Japonica rice varieties from the northeast to the unique photoperiod and temperature conditions of lower latitudes. While breeders can select varieties for their adaptability, the sensitivity to light and temperature often complicates and prolongs the process. Addressing the challenge of cultivating high-yield, superior-quality Japonica rice over expanded latitudinal ranges swiftly, in the face of these sensitivities, is critical. Our approach harnesses the CRISPR-Cas9 technology to edit the EHD1 gene in the premium northeastern Japonica cultivars Jiyuanxiang 1 and Yinongxiang 12, which are distinguished by their exceptional grain quality-increased head rice rates, gel consistency, and reduced chalkiness and amylose content. Field trials showed that these new ehd1 mutants not only surpass the wild types in yield when grown at low latitudes but also retain the desirable traits of their progenitors. Additionally, we found that disabling Ehd1 boosts the activity of Hd3a and RFT1, postponing flowering by approximately one month in the ehd1 mutants. This research presents a viable strategy for the accelerated breeding of elite northeastern Japonica rice by integrating genomic insights with gene-editing techniques suitable for low-latitude cultivation.

2.
BMC Cardiovasc Disord ; 24(1): 18, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172711

RESUMO

OBJECTIVE: Many studies have found that miR-26a-5p plays an essential role in the progression of pathological cardiac hypertrophy, however, there is still no evidence on whether miR-26a-5p is related to the activation of autophagy and NLRP3 inflammasome. And the mechanism of miR-26a-5p and NLRP3 inflammasome aggravating pathological cardiac hypertrophy remain unclear. METHODS: Cardiomyocytes were treated with 200µM PE to induce cardiac hypertrophy and intervened with 10mM NLRP3 inhibitor INF39. In addition, we also used the MiR-26a-5p mimic and inhibitor to transfect PE-induced cardiac hypertrophy. RT-qPCR and western blotting were used to detect the expressions of miR-26a-5p, NLRP3, ASC and Caspase-1 in each group, and we used α-SMA immunofluorescence to detect the change of cardiomyocyte area. The expression levels of autophagy proteins LC3, beclin-1 and p62 were detected by western blotting. Finally, we induced the SD rat cardiac hypertrophy model through aortic constriction (TAC) surgery. In the experimental group, rats were intervened with MiR-26a-5p mimic, MiR-26a-5p inhibitor, autophagy inhibitor 3-MA, and autophagy activator Rapamycin. RESULTS: In cell experiments, we observed that the expression of miR-26a-5p was associated with cardiomyocyte hypertrophy and increased surface area. Furthermore, miR-26a-5p facilitated autophagy and activated the NLRP3 inflammasome pathway, which caused changes in the expression of genes and proteins including LC3, beclin-1, p62, ACS, NLRP3, and Caspase-1. We discovered similar outcomes in the TAC rat model, where miR-26a-5p expression corresponded with cardiomyocyte enlargement and fibrosis in the cardiac interstitial and perivascular regions. In conclusion, miR-26a-5p has the potential to regulate autophagy and activate the NLRP3 inflammasome, contributing to the development of cardiomyocyte hypertrophy. CONCLUSION: Our study found a relationship between the expression of miR-26a-5p and cardiomyocyte hypertrophy. The mechanism behind this relationship appears to involve the activation of the NLRP3 inflammasome pathway, which is caused by miR-26a-5p promoting autophagy. Targeting the expression of miR-26a-5p, as well as inhibiting the activation of autophagy and the NLRP3 inflammasome pathway, could offer additional treatments for pathological cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Ratos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Beclina-1/metabolismo , Ratos Sprague-Dawley , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiomegalia/genética , Autofagia , Caspases/metabolismo
3.
Chem Biodivers ; 21(3): e202302070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302826

RESUMO

Ultrasound-assisted extraction (UAE) method proves to be more effective compared to traditional extraction methods. In the present study, response surface methodology (RSM) was used to determine the optimal process parameters for extracting polysaccharides (U-MCP) from jaboticaba fruit using UAE. The optimum extraction conditions were ultrasonic time 70 min, extraction temperature 60 °C, and power 350 W. Under these conditions, the sugar content of U-MCP was 52.8 %. The molecular weights of the ultrasound-assisted extracted U-MCP ranged from 9.52×102 to 3.27×103  Da, and consisted of five monosaccharides including mannose, galacturonic acid, glucose, galactose, and arabinose. Moreover, in vitro antioxidant and hypoglycaemic assay revealed that U-MCP has prominent anti-oxidant activities (1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals, hydroxyl radicals and 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt) (ABTS) radicals scavenging activities) and hypoglycemic activities (α-amylase and α-glucosidase inhibition activities).


Assuntos
Antioxidantes , Hipoglicemiantes , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Frutas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/análise
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000188

RESUMO

Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.


Assuntos
Clorofila , Mutação , Oryza , Folhas de Planta , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clorofila/metabolismo , Senescência Vegetal/genética , Mapeamento Cromossômico , Fenótipo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Genes de Plantas , Peróxido de Hidrogênio/metabolismo
5.
Plant Physiol ; 188(1): 460-476, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34730827

RESUMO

Lateral branches such as shoot and panicle are determining factors and target traits for rice (Oryza sativa L.) yield improvement. Cytokinin promotes rice lateral branching; however, the mechanism underlying the fine-tuning of cytokinin homeostasis in rice branching remains largely unknown. Here, we report the map-based cloning of RICE LATERAL BRANCH (RLB) encoding a nuclear-localized, KNOX-type homeobox protein from a rice cytokinin-deficient mutant showing more tillers, sparser panicles, defected floret morphology as well as attenuated shoot regeneration from callus. RLB directly binds to the promoter and represses the transcription of OsCKX4, a cytokinin oxidase gene with high abundance in panicle branch meristem. OsCKX4 over-expression lines phenocopied rlb, which showed upregulated OsCKX4 levels. Meanwhile, RLB physically binds to Polycomb repressive complex 2 (PRC2) components OsEMF2b and co-localized with H3K27me3, a suppressing histone modification mediated by PRC2, in the OsCKX4 promoter. We proposed that RLB recruits PRC2 to the OsCKX4 promoter to epigenetically repress its transcription, which suppresses the catabolism of cytokinin, thereby promoting rice lateral branching. Moreover, antisense inhibition of OsCKX4 under the LOG promoter successfully increased panicle size and spikelet number per plant without affecting other major agronomic traits. This study provides insight into cytokinin homeostasis, lateral branching in plants, and also promising target genes for rice genetic improvement.


Assuntos
Meristema/genética , Meristema/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Metilação/efeitos dos fármacos , Plantas Geneticamente Modificadas
6.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446259

RESUMO

Chilling stress seriously limits grain yield and quality worldwide. However, the genes and the underlying mechanisms that respond to chilling stress remain elusive. This study identified ABF1, a cold-induced transcription factor of the bZIP family. Disruption of ABF1 impaired chilling tolerance with increased ion leakage and reduced proline contents, while ABF1 over-expression lines exhibited the opposite tendency, suggesting that ABF1 positively regulated chilling tolerance in rice. Moreover, SnRK2 protein kinase SAPK10 could phosphorylate ABF1, and strengthen the DNA-binding ability of ABF1 to the G-box cis-element of the promoter of TPS2, a positive regulator of trehalose biosynthesis, consequently elevating the TPS2 transcription and the endogenous trehalose contents. Meanwhile, applying exogenous trehalose enhanced the chilling tolerance of abf1 mutant lines. In summary, this study provides a novel pathway 'SAPK10-ABF1-TPS2' involved in rice chilling tolerance through regulating trehalose homeostasis.


Assuntos
Oryza , Oryza/metabolismo , Trealose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Proteínas de Plantas/metabolismo
7.
Plant Physiol ; 182(4): 2047-2064, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32029522

RESUMO

Plant male gametogenesis is a coordinated effort involving both reproductive tissues and sporophytic tissues, in which lipid metabolism plays an essential role. Although GDSL esterases/lipases have been well known as key enzymes for many plant developmental processes and stress responses, their functions in reproductive development remain unclear. Here, we report the identification of a rice male sterile2 (rms2) mutant in rice (Oryza sativa), which is completely male sterile due to the defects in tapetum degradation, cuticle formation in sporophytic tissues, and impaired exine and central vacuole development in pollen grains. RMS2 was map-based cloned as an endoplasmic reticulum-localized GDSL lipase gene, which is predominantly transcribed during early anther development. In rms2, a three-nucleotide deletion and one base substitution (TTGT to A) occurred within the GDSL domain, which reduced the lipid hydrolase activity of the resulting protein and led to significant changes in the content of 16 lipid components and numerous other metabolites, as revealed by a comparative metabolic analysis. Furthermore, RMS2 is directly targeted by the male fertility regulators Undeveloped Tapetum1 and Persistent Tapetal Cell1 both in vitro and in vivo, suggesting that RMS2 may serve as a key node in the rice male fertility regulatory network. These findings shed light on the function of GDSLs in reproductive development and provide a promising gene resource for hybrid rice breeding.


Assuntos
Lipase/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Lipase/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução/genética , Reprodução/fisiologia
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830102

RESUMO

Gibberellins (GAs) are diterpenoid phytohormones regulating various aspects of plant growth and development, such as internode elongation and seed germination. Although the GA biosynthesis pathways have been identified, the transcriptional regulatory network of GA homeostasis still remains elusive. Here, we report the functional characterization of a GA-inducible OsABF1 in GA biosynthesis underpinning plant height and seed germination. Overexpression of OsABF1 produced a typical GA-deficient phenotype with semi-dwarf and retarded seed germination. Meanwhile, the phenotypes could be rescued by exogenous GA3, suggesting that OsABF1 is a key regulator of GA homeostasis. OsABF1 could directly suppress the transcription of green revolution gene SD1, thus reducing the endogenous GA level in rice. Moreover, OsABF1 interacts with and transcriptionally antagonizes to the polycomb repression complex component OsEMF2b, whose mutant showed as similar but more severe phenotype to OsABF1 overexpression lines. It is suggested that OsABF1 recruits RRC2-mediated H3K27me3 deposition on the SD1 promoter, thus epigenetically silencing SD1 to maintain the GA homeostasis for growth and seed germination. These findings shed new insight into the functions of OsABF1 and regulatory mechanism underlying GA homeostasis in rice.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética
9.
Angew Chem Int Ed Engl ; 60(41): 22212-22218, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34375017

RESUMO

The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost-effective impact-resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one-dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra-stretchability, high rate-dependent strength, superior impact-resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co-existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster-based materials.

10.
Biophys J ; 119(6): 1056-1064, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891186

RESUMO

The microstructure of the extracellular matrix (ECM) plays a key role in affecting cell migration, especially nonproteolytic migration. It is difficult, however, to measure some properties of the ECM, such as stiffness and the passability for cell migration. On the basis of a network model of collagen fiber in the ECM, which has been well applied to simulate mechanical behaviors such as the stress-strain relationship, damage, and failure, we proposed a series of methods to study the microstructural properties containing pore size and pore stiffness and to search for the possible migration paths for cells. Finally, with a given criterion, we quantitatively evaluated the passability of the ECM network for cell migration. The fiber network model with a microstructure and the analysis method presented in this study further our understanding of and ability to evaluate the properties of an ECM network.


Assuntos
Matriz Extracelular , Movimento Celular
11.
New Phytol ; 228(4): 1336-1353, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32583457

RESUMO

Abscisic acid (ABA) and jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a 'SAPK10-bZIP72-AOC' pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using biochemical interaction and phosphorylation assays, we show that SAPK10 exhibits autophosphorylation activity on the 177th serine, which enables it to phosphorylate bZIP72 majorly on 71st serine. The SAPK10-dependent phosphorylation enhances bZIP72 protein stability as well as the DNA-binding ability to the G-box cis-element of AOC promoter, thereby elevating the AOC transcription and the endogenous concentration of JA. Blocking of JA biosynthesis significantly alleviated the ABA sensitivity on seed germination, suggesting that ABA-imposed inhibition partially relied on the elevated concentration of JA. Our findings shed a novel insight into the molecular networks of ABA-JA synergistic interaction during rice seed germination.


Assuntos
Ácido Abscísico , Oryza , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Oxilipinas , Sementes
12.
Sensors (Basel) ; 19(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159466

RESUMO

Long-term structural health monitoring (SHM) has become an important tool to ensure the safety of infrastructures. However, determining methods to extract valuable information from large amounts of data from SHM systems for effective identification of damage still remains a major challenge. This paper provides a novel effective method for structural damage detection by introduction of space and time windows in the traditional principal component analysis (PCA) technique. Numerical results with a planar beam model demonstrate that, due to the presence of space and time windows, the proposed double-window PCA method (DWPCA) has a higher sensitivity for damage identification than the previous method moving PCA (MPCA), which combines only time windows with PCA. Further studies indicate that the developed approach, as compared to the MPCA method, has a higher resolution in localizing damage by space windows and also in quantitative evaluation of damage severity. Finally, a finite-element model of a practical bridge is used to prove that the proposed DWPCA method has greater sensitivity for damage detection than traditional methods and potential for applications in practical engineering.

13.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905829

RESUMO

Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. Sub-cellular localization experiments showed that KRP1 was mainly localized in the nucleus of rice protoplasts. KRP1 overexpression transgenic lines (OxKRP1), krp2 single mutant (crkrp2), and krp1/krp2 double mutant (crkrp1/krp2) all exhibited significantly smaller seed width, seed length, and reduced grain weight, with impaired seed germination and retarded early seedling growth, suggesting that disturbing the normal steady state of KRP1 or KRP2 blocks seed development partly through inhibiting cell proliferation and enlargement during grain filling and seed germination. Furthermore, two cyclin-dependent protein kinases, CDKC;2 and CDKF;3, could interact with KRP1 in a yeast-two-hybrid system, indicating that KRP1 might regulate the mitosis cell cycle and endoreduplication through the two targets. In a word, this study shed novel insights into the regulatory roles of KRPs in rice seed maturation and germination.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Germinação/fisiologia , Oryza/metabolismo , Sementes/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo
14.
Opt Lett ; 43(12): 2764-2767, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905683

RESUMO

Microwave absorber with broadband absorption and thin thickness is one of the main research interests in this field. A flexible ultrathin and broadband microwave absorber comprising multiwall carbon nanotubes, spherical carbonyl iron, and silicone rubber is fabricated in a newly proposed pyramidal spatial periodic structure (SPS). The SPS with equivalent thickness of 3.73 mm covers the -10 dB and -15 dB absorption bandwidth in the frequency range 2-40 GHz and 10-40 GHz, respectively. The excellent absorption performance is achieved by concentration and dissipation of the electromagnetic field inside different parts of the magnetic-dielectric lossy protrusions in different frequency ranges.

15.
Physiol Plant ; 160(4): 458-475, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28382632

RESUMO

Protein phosphorylation is an important posttranslational modification that regulates various plant developmental processes. Here, we report a comprehensive, quantitative phosphoproteomic profile of six rice tissues, including callus, leaf, root, shoot meristem, young panicle and mature panicle from Nipponbare by employing a mass spectrometry (MS)-based, label-free approach. A total of 7171 unique phosphorylation sites in 4792 phosphopeptides from 2657 phosphoproteins were identified, of which 4613 peptides were differentially phosphorylated (DP) among the tissues. Motif-X analysis revealed eight significantly enriched motifs, such as [sP], [Rxxs] and [tP] from the rice phosphosites. Hierarchical clustering analysis divided the DP peptides into 63 subgroups, which showed divergent spatial-phosphorylation patterns among tissues. These clustered proteins are functionally related to nutrition uptake in roots, photosynthesis in leaves and tissue differentiation in panicles. Phosphorylations were specific in the tissues where the target proteins execute their functions, suggesting that phosphorylation might be a key mechanism to regulate the protein activity in different tissues. This study greatly expands the rice phosphoproteomic dataset, and also offers insight into the regulatory roles of phosphorylation in tissue development and functions.


Assuntos
Oryza/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Espectrometria de Massas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Oryza/crescimento & desenvolvimento , Fosforilação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Proteômica
16.
Heliyon ; 10(1): e23461, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148802

RESUMO

Vibrio parahaemolyticus is distributed worldwide in seafood such as fish, shrimp, and shellfish and is a major cause of seafood-borne diarrhoeal disease. Previous studies have reported infections contacting with contaminated seafood seawater. So far, 11 cases reported of skin and soft tissue infections (SSTIs) caused by V. parahaemolyticus, which 5 patients died and 6 survived. We found that transmission through contact with contaminated water also causes infection. We report a 46-year-old male contracted V. parahaemolyticus after being splashed with market sewage. His condition deteriorated rapidly and he died eventually, suggesting that more atypical modes of V. parahaemolyticus transmission may be possible in the future. Literature review revealed that SSTIs due to V. parahaemolyticus are rare, so, detailed questioning of the patient's exposure history can help with empirical drug administration early. Patients with immunodeficiency disease and progressive blistering need mandatory debridement urgently. If fascial necrosis is found during debridement, early amputation may save the patient's life.

17.
Injury ; 55(8): 111658, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38879923

RESUMO

BACKGROUND: Accidental impact on a player's head by a powerful soccer ball may lead to brain injuries and concussions during games. It is crucial to assess these injuries promptly and accurately on the field. However, it is challenging for referees, coaches, and even players themselves to accurately recognize potential injuries and concussions following such impacts. Therefore, it is necessary to establish a list of minimum ball velocity thresholds that can result in concussions at different impact locations on the head. Additionally, it is important to identify the affected brain regions responsible for impairments in brain function and potential clinical symptoms. METHODS: By using a full human finite element model, dynamic responses and brain injuries caused by unintentional soccer ball impacts on six distinct head locations (forehead, tempus, crown, occiput, face, and jaw) at varying ball velocities (10, 15, 20, 25, 30, 35, 40, and 60 m/s) were simulated and investigated. Intracranial pressure, Von-Mises stress, and first principal strain were analyzed, the ball velocity thresholds resulting in concussions at different impact locations were evaluated, and the damage evolution patterns in the brain tissue were analyzed. RESULTS: The impact on the occiput is most susceptible to induce brain injuries compared to all other impact locations. For a conservative assessment, the risk of concussion is present once the soccer ball reaches 17.2 m/s in a frontal impact, 16.6 m/s in a parietal impact, 14.0 m/s in an occipital impact, 17.8 m/s in a temporal impact, 18.5 m/s in a facial impact or 19.2 m/s in a mandibular impact. The brain exhibits the most significant dynamic responses during the initial 10-20 ms, and the damaged regions are primarily concentrated in the medial temporal lobe and the corpus callosum, potentially causing impairments in brain functions. CONCLUSIONS: This work offers a framework for quantitatively assessing brain injuries and concussions induced by an unintentional soccer ball impact. Determining the ball velocity thresholds at various impact locations provides a benchmark for evaluating the risks of concussion. The examination of brain tissue damage evolution introduces a novel approach to linking biomechanical responses with possible clinical symptoms.

18.
Injury ; 55(6): 111457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490847

RESUMO

BACKGROUND: Although the Head Injury Criteria (HIC) has been widely applied to assess head impact injuries, it faces two outstanding problems: 1) HIC is affected strongly by the cut-off frequency when processing acceleration signals. And these cut-off frequencies are experiential and lack unified guidelines; 2) If the head was impacted on a different part, should the corresponding HIC threshold be the same? If these problems are not resolved, it could potentially lead to a critical misinterpretation of the safety assessment. METHODS: Finite element method was used to reconstruct head impacts. The head model includes tissues like skull, brainstem, cerebrospinal fluid, etc. The head model was impacted in the frontal, occipital, parietal or lateral direction with different impact velocities. Acceleration signals of the head model were extracted directly from the skull and the head centroid node. To obtain a robust HIC, the filtering class of acceleration signals were analyzed carefully. Then, the relation between rigid body HIC and the centroid node HIC were studied systematically. RESULTS: When the filtering class of rigid body acceleration and centroid node acceleration reached the cut-off frequency, the corresponding derivative of HIC tended to change smoothly. Using these cut-off frequencies, robust HICs were obtained. The rigid body HIC far exceeded that of centroid node HIC, such as 8, 9, 14 and 31 times exceeded in the frontal, occipital, parietal and lateral impact conditions, respectively. Moreover, approximate linear relations were found between the rigid body HIC and the centroid node HIC in different impact directions, respectively. From these relations, the injury thresholds of rigid body HIC of various directions were given quantitatively. CONCLUSIONS: The rational filtering class like CFC 800 and CFC 700 were given for rigid body HIC and centroid node HIC, respectively. The rigid body HIC had a significant discrepancy from the centroid node HIC. Linear relations between the rigid body HIC and centroid node HIC were found, and their slopes changed with impact directions. From these relations, we can adjust the injury thresholds reasonably if the head receives different impacts. These findings can effectively enhance the applicability of HIC.


Assuntos
Aceleração , Traumatismos Craniocerebrais , Análise de Elementos Finitos , Humanos , Traumatismos Craniocerebrais/fisiopatologia , Fenômenos Biomecânicos , Simulação por Computador , Acidentes de Trânsito
19.
ACS Appl Mater Interfaces ; 16(22): 29217-29225, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776472

RESUMO

Electrohydrodynamic (EHD) jet printing is a widely employed technology to create high-resolution patterns and thus has enormous potential for circuit production. However, achieving both high conductivity and high resolution in printed polymer electrodes is a challenging task. Here, by modulating the aggregation state of the conducting polymer in the solution and solid phases, a stable and continuous jetting of PEDOT:PSS is realized, and high-conductivity electrode arrays are prepared. The line width reaches less than 5 µm with a record-high conductivity of 1250 S/cm. Organic field-effect transistors (OFETs) are further developed by combining printed source/drain electrodes with ultrathin organic semiconductor crystals. These OFETs show great light sensitivity, with a specific detectivity (D*) value of 2.86 × 1014 Jones. In addition, a proof-of-concept fully transparent phototransistor is demonstrated, which opens up new pathways to multidimensional optical imaging.

20.
Rice (N Y) ; 17(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228921

RESUMO

As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA