Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 12: e16792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250728

RESUMO

Background: Pepper (Capsicum annuum L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated. Methods: RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software. Results: The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 vs EJT-10, HN191-20 vs EJT-20, HN191-30 vs EJT-30, HN192-30 vs EJT-30, and HN005-30 vs EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.


Assuntos
Frutas , Piper nigrum , Frutas/genética , Antocianinas/genética , Genes Reguladores , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
2.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736753

RESUMO

Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA